Return to search

Contrôle actif des vibrations en fraisage. / Control for vibration Phenomena in Mechanical Machining.

Cette thèse commence avec un état de l’art des domaines d’études importants pour notre objectif (différentes techniques usuelles de réduction des vibrations en usinage, méthodes de contrôle actif) avant de valider le principe de contrôle actif du fraisage en se plaçant en repère fixe. On a alors développé un modèle d’état d’une poutre d’Euler Bernoulli perturbée en un point et corrigée en un autre via un actionneur piézoélectrique. Ce modèle a permis d’obtenir plusieurs compensateurs, suivant différentes stratégies de commande. Nous avons par la suite procédé, d’un point de vue expérimental, à l’étude sur un dispositif similaire à notre besoin d’un point de vue de l’actionnement et des ordres de grandeurs (amplification mécanique, gamme de fréquences etc.). Les stratégies de commande robustes que nous avons développé pour pouvoir atténuer les déplacements vibratoires de cette poutre ont conduit à des résultats concluants présentés dans le même chapitre, d’abord en simulation (qui nous a permis une étude comparative), avec ou sans la présence du processus d’usinage, puis expérimentalement. La robustesse de ces stratégies de commande a été étudiée (en simulation) en ajoutant des incertitudes au modèle étudié de différentes manières. Ensuite, nous avons identifié le modèle du système étudié, déterminé les correcteurs correspondants et testé ces derniers sur notre banc d’essai pour valider le bon fonctionnement des différentes stratégies de contrôle utilisées tout le long de cette thèse. Enfin, pour préparer un déploiement de ces stratégies en repère tournant (porte-outil de contrôle actif), nous avons modélisé et implémenté les mêmes démarches pour le cas où l’actionnement se situe en repère tournant et concerne deux axes simultanément, situés dans le plan XY du porte-outil. Nous avons d’abord étudié les vibrations transversales d’une poutre en rotation dans le cas général avant de négliger les phénomènes d’inertie et gyroscopique. En effet, on s’intéresse au contrôle actif du fraisage particulièrement dans les applications de finition, là où on utilise des outils longs de faibles diamètres. Les nouvelles expressions des deux fonctions de transfert de notre système usinant ont été déterminées pour obtenir sa représentation d’état, clé du contrôle actif. La projection du processus de coupe sur le repère tournant est indispensable pour effectuer les simulations du fraisage via le porte outil actif. Ce dernier chapitre met en relief les perspectives de cette thèse, à savoir le contrôle actif du fraisage quelque soit le type de l’opération ou du diamètre de l’outil avec un porte outil mécatronique destiné pour ce genre d’opérations. / This thesis deals with the fields of study which are important for our objective (different usual vibration reduction techniques in machining, active control methods) before validating the principle of active control of milling in a fixed reference. We then developed a state space model of an Euler Bernoulli beam excited at one point and corrected in another one by a piezoelectric actuator. This model allowed us to obtain several compensators, according to different control strategies. We then proceeded from an experimental point of view to study a device similar to our need from an actuating point of view and levels of magnitude (mechanical amplification, frequency range, etc.). ). The robust control strategies that we have developed to attenuate the vibratory displacements of this beam have led to conclusive results presented in the same chapter, first in simulation (which allowed us a comparative study), with and without the cutting process and then experimentally. The robustness of these control strategies was studied (in simulation) by adding uncertainties to the model in different ways. Then we have identified the model of the system, calculated the corresponding compensators and tested them on the test bench in order to validate the good functioning of the different control strategies used in this thesis. Finally, in order to use these strategies in rotating reference (active control tool holder), we have modeled and implemented the same steps for the case where the actuation is located in rotating reference and concerns two axes simultaneously, located in the XY plane of the tool holder. We first studied the transverse vibrations of a rotating beam in the general case before neglecting the inertia and gyroscopic phenomena. Actually, we are interested in the active control of milling, particularly in finishing applications, where long tools of small diameters are used. The new expressions of the two transfer functions of the system have been determined to obtain its state space representation, key of the active control. Projection of the cutting process on the rotating reference is essential to perform milling simulations with the active tool holder. This last chapter highlights the prospects of this thesis,that is the active control of the milling for all kinds of milling operations as well as for different tools with a mechatronic tool holder aimed for this kind of operation.

Identiferoai:union.ndltd.org:theses.fr/2017ENAM0066
Date21 December 2017
CreatorsKochtbene, Feriel
ContributorsParis, ENSAM, Carmona, Jean-Claude, Moraru, George
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds