Return to search

Energy generating performance of domestic wastewater fed sandwich dual-chamber microbial fuel cells

M.Tech. (Civil Engineering) / This study presents work on the design and construction of three dual-chamber microbial fuel cells (MFCs) using a sandwich separator electrode assembly (SSEA) and membrane cathode assembly (MCA) for the dual purposes of energy generation from domestic wastewater and wastewater treatment. MFC1 was designed using an improvised SSEA technique (i.e. a separator electrode membrane electrode configuration, SEMEC) by gluing a sandwich of anode, membrane and a mesh current collector cathode to an anode chamber made from a polyethylene wide-mouth bottle. The reactor was filled with 1500 mL of domestic wastewater and operated on a long fed-batch mode with a residence time of 3 weeks. The reactor was inoculated with a mixed culture of bacteria present in the wastewater stream. The aim was to study the impact of wastewater COD concentration on power generation and wastewater treatment efficiency. For MFC2 and MFC 3, cathodes were constructed using the MCA technique consisting of a membrane and a mesh current collector cathode, with the anode electrode at the opposite side of stacked Perspex sections used for the anode chamber. The impact of electrode material on current production was examined in this study. For MFC2 a mesh current collector treated with polytetrafluoroethylene (PTFE) and activated carbon (AC) functioned as the cathode, while the MFC3 cathode was an uncatalyzed mesh current collector. The two reactors were both filled with 350 mL of domestic wastewater...

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:13627
Date26 June 2015
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.0022 seconds