We have studied the electron quantum phase by fabricating low dimensional (d ≤ 2) mesoscopic interferometers in high-quality narrow-gap semiconductor (NGS) heterostructures. The low effective-mass electrons in NGS heterostructures enable observation of delicate quantum phases; and the strong spin-orbit interaction (SOI) in the systems gives us means by which we can manipulate the quantum-mechanical spin of these electrons through the orbital properties of the electrons. This enables the observation of spin-dependent phenomena otherwise inaccessible in non-magnetic systems. We have performed low temperature (0.4 K ≤ T ≤ 8 K), low noise (â V ~ 1μV ) transport measurements, and observed evidence of Aharonov-Bohm (AB) and Alâ tshuler-Aronov-Spivak (AAS) quantum oscillations in meso- scopic devices that we fabricated on these NGSs. Our measurements are unique in that we observe both AB and AAS in comparable magnitude in ballistic networks with strong SOI. We show that, with appropriate considerations, diffusive formalisms can be used to describe ballistic transport through rings, even in the presence of SOI. This work also contains an introduction to the physics of geometric phases in mesoscopic systems, and the experimental and analytic processes through which these phases are probed. A discussion of the results of our measurements presents the case that quantum interferometric measurements of geometric phases can be understood quite thoroughly, and that these measurements may have deeper utility in discovery than has yet been recognized. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/26889 |
Date | 03 May 2011 |
Creators | Lillianfeld, Robert Brian |
Contributors | Physics, Heremans, Jean J., Asryan, Levon V., Heflin, James R., Kulkarni, Rahul V. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Lillianfeld_RB_D_2011_Copyright.pdf, Lillianfeld_RB_D_2011.pdf |
Page generated in 0.0026 seconds