Cette thèse présente la réalisation d’un piège optique dans une configuration originale, le piston optique, où le contrôle sur la phase de l’interférence d’un faisceau incident avec sa réflexion sur un miroir permet de réaliser différents types d’expériences. Nous avons d’abord étudié les propriétés thermodynamiques d’une compression progressive du piston qui fait passer la dynamique de la particule piégée d’une région de stabilité vers une région de bistabilité mécanique. Dans le contexte de la résonance stochastique où une force extérieure périodique est appliquée sur cette dynamique bistable, une approche exploitant le facteur de Mandel ainsi qu’une analyse des délais entre les transitions d’états métastables se révèle efficace pour interpréter nos mesures dans différents régimes de forçage. Nous montrons également comment des nanoparticules métalliques peuvent être piégées aisément dans un tel piston optique et nous exploitons notre configuration pour mesurer de faibles effets de forces optiques. Enfin, nous piégeons des nano-objets chiraux uniques et nous montrons comment la configuration de notre piston permet de réaliser des expériences de reconnaissance chirale par polarimétrie différentielle. / This thesis describes the experimental realization of an original optical trap, the optical piston, where controlling the phase of the interference of an incident beam with its reflection on a mirror allows achieving various experiments. We have first looked into the thermodynamics associated with a progressive compression of the piston leading the dynamics of a trapped particle from a region of stability to a region of mechanical bistability. In the context of stochastic resonance where a periodic external force is applied on this bistable dynamics, an approach exploiting the Mandel factor and a time-delay analysis on the hopping events between metastable states have proven efficient in interpreting the different results acquired in different regimes of drive. We have also shown how metallic nanoparticles can be trapped fairly easily in this kind of optical piston and we exploit our configuration to measure weak optical forces. Finally, we trap unique chiral nano-objects and we show how the configuration of our piston allows the realization of chiral recognition experiments by differential polarimetry.
Identifer | oai:union.ndltd.org:theses.fr/2016STRAF057 |
Date | 22 September 2016 |
Creators | Schnoering, Gabriel |
Contributors | Strasbourg, Ebbesen, Thomas W. |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds