Return to search

Metallic impurities in the Cu-fraction of Ni targets prepared from NiCl2 solutions

Introduction
Copper-64 is an emerging radionuclide with applications in PET molecular imaging and/or internal therapy and it is typically produced by proton irradiation of isotopically enriched 64Ni electrodeposited on a suitable backing substrate. We recently reported a simple and efficient method for the preparation of nickel targets from electrolytic solutions of nickel chloride and boric acid [1]. Herein we report our recent research work on the analysis of metallic impurities in the copper-fraction of the radiochemical separation process.

Material and Methods
Nickel targets were prepared and processed as previously reported [1]. Briefly, the bath solution was composed of a mixture of natural NiCl2. 6H2O (135 mg/ml) and H3BO3 (15 mg/ml) and Ni was electrodeposited using a gold disk as cathode and a platinum wire as anode. The plating process was carried out at room temperature using 2 ml of bath solution (pH = 3.7) and a constant current density of 60 mA/cm2 for 1 hour. The unirradiated Ni targets were dissolved in 1–2 ml of concentrated (10M) HCl at 90 oC. After complete dissolution of the Ni layer, water was added to dilute the acid to 6M, and the solution was transferred onto a chromatographic column containing AG 1-X8 resin equilibrated with 6M HCl. The Ni , Co and Cu isotopes were separated by using the well-known chromatography of the chloro-complexes. The sample-fractions containing the Cu isotopes (15 ml, 0.1M HCl) were collected in plastic centrifuge tubes previously soaked in 1M HNO3 and rinsed with Milli-Q water (18 MΩ cm). Impurities of B, Co, Ni, Cu and Zn in these samples were determined by inductively coupled plasma-mass spectroscopy (ICP-MS) at the Department of Geosciences (Laboratory of Isotopic Studies) of the National University.

Results and Conclusions
The mass of Ni deposited in 1 h was 25.0 ± 1.0 mg (n = 3) and the current efficiency was > 75 % in all cases. The pH of the electrolytic solution tended to decrease along the electrodeposition process (3.71.6). The results of ICP-MS analysis of the Cu-fractions from the cold chromatography separation runs are shown in FIG. 1. We were particularly interested in the boron impurities as H3BO3 is used as buffer for electrodeposition of the Ni targets.
Except for the Ni impurities that were deter-mined to be in the range of ppm (mg/l), all other analyzed metallic impurities were found to be in the range of ppb (µg/l), including boron. The Co, Ni, Cu and Zn impurities determined in the Cu-fraction in this work using Ni targets electrode-posited from a NiCl2 acidic solution, are in the same order of magnitude compared with that obtained when using targets prepared from an alkaline solution [2], with the advantage of the simplicity of the electrodeposition method from NiCl2 solutions, as the target material is already recovered in the chemical form of NiCl2, enabling a simpler, one step process to prepare a new plating solution when using enriched 64Ni target material for the production of 64Cu.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22301
Date January 2015
CreatorsManrique-Arias, J. C., Avila-Rodriguez, M. A.
ContributorsUnidad PET, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
PublisherHelmholtz-Zentrum Dresden - Rossendorf
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
SourceWTTC15
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:d120-qucosa-162048, qucosa:22221

Page generated in 0.0022 seconds