Return to search

Analyse des Einflusses verschiedener Kräfte und thermophysikalischer Eigenschaften auf das Elektronenstrahlschweißen von TRIP-Stahl und TRIP-Matrix-Compositen mittels numerischer Thermofluiddynamik

Das Elektronenstrahlschweißen im Vakuum hat sich als zuverlässiges Verfahren für die Herstellung schmaler und hochpräziser Schweißnähte beim Schweißen von TRIP-Stählen bewährt. Das Verständnis für die dabei auftretenden Mechanismen und wirkenden Kräfte stellt einen wichtigen Baustein für die Weiterentwicklung des Verfahrens dar. Um zur Erweiterung dieses Verständnisses beizutragen, wird auf Basis vorhandener Berechnungsmethoden in OpenFOAM ein numerisches Modell für das Elektronenstrahlschweißen entwickelt. Es ist in der Lage, die dafür relevanten Einflussfaktoren zu berücksichtigen. So werden die Wärmeübertragung im Feststoff und der Schmelze, alle Aggregatzustandsänderungen und die auf die Dynamik der Schmelze wirkenden Kräfte einbezogen. Das entwickelte Simulationsmodell ist in der Lage zu zeigen, dass außer der natürlichen Konvektion vor allem der beim Verdampfen der Schmelze entstehende Überdruck und die thermokapillare Konvektion an der Schmelzeoberfläche für hohe Strömungsgeschwindigkeiten verantwortlich sind. Darüber hinaus haben neben der Schmelzbaddynamik die thermophysikalischen Eigenschaften des Stahls einen starken Einfluss auf die Ausprägung der Schweißnaht. Vor allem die Wärmeleitfähigkeit verändert diese erheblich, was die Simulationen unter Berücksichtigung der Temperaturabhängigkeit verdeutlichen. Die in dieser Arbeit erreichten Erkenntnisse helfen, die beim Elektronenstrahlschweißen entstehenden Nahtgeometrien und die Gründe für hohe Strömungsgeschwindigkeiten im Schmelzbad besser einordnen und verstehen zu können. Darüber hinaus dient das entwickelte numerische Modell mit der Berücksichtigung aller relevanten Mechanismen als Grundlage für Weiterentwicklungen hinsichtlich vielerlei Anwendungen, beispielsweise für das Schweißen anderer Werkstoffe, zusätzliche Effekte wie dem Spiking oder anderen Elektronenstrahltechnologien wie dem Elektronenstrahlschmelzen im Bereich der additiven Fertigung.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78534
Date20 April 2022
CreatorsBorrmann, Sebastian
ContributorsSchwarze, Rüdiger, Biermann, Horst, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds