Ce travail de thèse s'inscrit dans le cadre général du développement de micro-actionneurs MEMS, à bas coût et de technologie simple, pour de futures applications dans le domaine de la microfluidique, notamment. La motivation de ce travail est d'évaluer la faisabilité d'un micro-actionneur électrostricitf à base de film mince polymère électroactif nanocomposite. Le polyuréthane, chargé en nanoparticules de carbone ou carbure de fer, encore peu étudié mais aux propriétés électrostrictives prometteuses, est choisi comme matériau à intégrer dans une filière MEMS silicium classique. Le premier chapitre dresse un état de l'art sur les actionneurs MEMS, présente les différentes familles de polymères électroactifs et définit ce qu'est l'électrostriction. Le second chapitre est consacré à l'intégration sur silicium de films minces de polyuréthane et au développement de différentes structures de tests. L'accent est mis sur la levée de plusieurs verrous technologiques. Le chapitre trois présente les méthodes de caractérisations mécaniques et électriques et les résultats obtenus sur films purs et nanocomposites. Le quatrième et dernier chapitre concerne la réalisation et la caractérisation de premiers démonstrateurs MEMS. Ces micro-actionneurs sont caractérisés de manière statique et dynamique. / This thesis is part of the general development of MEMS microactuators, low cost and simple technology for future applications in the domain of microfluidics. The motivation of this work is to evaluate the feasibility of an electrostrictive microactuator based on electroactive nanocomposite polymer thin films. Polyurethane, loaded with carbon or iron carbide nanoparticles is chosen to be integrated in a conventional silicon MEMS process. The first chapter provides a state of the art of MEMS actuators, presents the different families of electroactive polymers and defines what is electrostriction. The second chapter is devoted to the integration of polyurethane thin films on silicon and to the development of different mechanical and electrical test structures. The emphasis is on identifying and overcoming technological barriers. Chapter three presents the mechanical and electrical characterization methods and the obtained results for pure and nanocomposites films. The fourth and final chapter concerns the realization and the static and dynamic characterizations of first MEMS demonstrators.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAL0135 |
Date | 17 December 2012 |
Creators | Roussel, Michael |
Contributors | Lyon, INSA, Malhaire, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds