Return to search

Dispositifs hyperfréquences reconfigurables par des mécanismes micro-mécaniques et micro-fluidiques : conception, réalisation, mesures. / Tunable Millimeter-wave devices using micro-mechanical and micro-fluidic reconfiguration mechanisms : design, fabrication, measurement

Il y a à l'heure actuelle un grand besoin en systèmes et composants agiles pour les dispositifs front-end RF. Dans cette thèse, deux approches innovantes sont développées pour la conception de tels dispositifs RF. Dans un premier temps, un mécanisme de reconfiguration micro-mécanique est développé. Cette approche vise à contrôler la hauteur d'un gap d'air inséré dans le substrat de composants microrubans afin d'en modifier les dimensions électriques. Les choix de conception et la fabrication d'un déphaseur à ligne micro-ruban ainsi que d'une antenne accordable en fréquence sont discutés. Une solution d'actionnement piézoélectrique basse tension (+/- 30 V) est retenue. La figure de mérite obtenue dans le cas du déphaseur atteint jusqu'à 313 °/dB ce qui dépasse l'état de l'art en matière de déphasage analogique. Dans le cas de l'antenne, le potentiel d'agilité en fréquence atteint 35 % autour d'une fréquence centrale de 55 GHz. Contrairement aux solutions classiques à base de semiconducteurs ou de RF-MEMS, ce mécanisme de reconfiguration n'impacte pas les performances de l'antenne dont l'efficacité de rayonnement est proche de 94 %. Dans un second temps, c'est un mécanisme micro-fluidique qui est étudié. L'agilité en fréquence d'antennes est créée par l'écoulement successif de liquides de permittivités différentes dans des micro-canaux intégrés au substrat. L'accord en fréquence atteint alors la très large ampleur de 51 % pour une fréquence centrale de 22 GHz. Cette étude s'accompagne de la recherche et caractérisation diélectrique de plusieurs fluides dans l'optique d'augmenter aussi bien la plage d'accord en fréquence que les performances de rayonnement des antennes / As wireless networks evolve, the frequency bands they exploit multiply. Frequency multiplexing, beamforming and tracking, networks interoperability, those mutations increase the need for agility and tunability in the RF-front end systems. In this thesis, two innovative approaches for the design of tunable RF components are studied. First, a micro-mechanical reconfiguration mechanism is developed. This approach means to control the height of an air gap within the substrate of microstrip components in order to control their electrical dimensions. Considerations for the design and fabrication of a phase-shifter and a frequency tunable patch antenna are made and a low voltage piezoelectric actuation (+/- 30 V) is chosen. The phase-shifter figure of merit reaches up to 312 °/dB which is beyond the state of the art in terms of analogic phase-shifting. Regarding the antenna, the frequency tuning potentially reaches up to 35 \% of a central frequency of 55 GHz. Unlike the classic solidstate or RF-MEMS based solutions, this reconfiguration mechanism does not impact the radiation performance of the antenna whose radiation efficiency is 94 \%. In a second approach, a micro-fluidic solution is studied. Frequency tuning capability is created in different antennas by the flow of successive liquids with different permittivities in integrated micro-channels. A large frequency tuning of 51 \% for a central frequency of 22 GHz is achieved. This study goes along with the search and characterization of several fluids with the objective of increasing both the frequency shift and the radiation performance of those antennas

Identiferoai:union.ndltd.org:theses.fr/2017ECLI0008
Date20 June 2017
CreatorsDufour, Gaëtan
ContributorsEcole centrale de Lille, Pernod, Philippe, Coquet, Philippe, Tiercelin, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds