Return to search

Design and implementation of microelectronic sensor to measure microorganism's growth in diverse environments

Titre de l'écran-titre (visionné le 15 mai 2023) / Cette recherche est financée par le programme CREATE du SMAART-CRSNG et la stratégie Sentinelle Nord de l'Université Laval. Ce projet vise à mettre au point un prototype de biocapteur multi détection utilisé pour surveiller la croissance des bactéries ainsi que les paramètres de croissance de leur environnement, notamment le pH et la température, dans divers environnements et dans des endroits éloignés comme le Grand-Nord canadien. La mesure de l'activité des micro-organismes, comme les bactéries, à très basse température peut être extrêmement difficile en raison de leur faible métabolisme et de leur taux de croissance beaucoup plus lent. En effet, la surveillance de leurs fonctions nécessite des outils de haute précision. En outre, lorsque la température ou le pH du milieu de croissance dépasse la plage optimale, la croissance du micro-organisme est entravée. Par conséquent, il est essentiel de surveiller les paramètres environnementaux et les facteurs écologiques, tels que le pH et la température, car ils ont un impact direct sur la croissance bactérienne. Un autre élément essentiel pour améliorer la sensibilité des mesures est la conception et le dimensionnement optimaux des électrodes de détection. La réduction de la taille des électrodes de détection peut permettre une détection à haut débit dans les applications microbiologiques, et permettre des mesures avec un échantillonnage de volume minuscule. Enfin, un système à micro-échelle léger et peu coûteux permet un transport facile dans les régions éloignées. Nous avons donc conçu et fabriqué un nouveau biocapteur multimodal de haute précision, de faible puissance et de poids léger, afin de mesurer la croissance les colonies de bactéries sur le terrain, tout en relevant tous les défis critiques mentionnés ci-dessus. Comme première contribution, pour augmenter la sensibilité des mesures, non seulement le matériau des électrodes mais aussi leur mise à l'échelle et leur miniaturisation sont abordés et évalués. Le prototype utilise plusieurs électrodes à l'échelle microscopique intégrées dans une seule zone de détection pour mesurer avec précision les changements d'impédance, de pH et de température ambiante causés par les activités microbiennes. Cette conception unique comprend des électrodes interdigitées plaquées or (AuIDE), des électrodes de pH à base d'oxyde d'iridium (IrO₂) et des électrodes de détecteur de résistance-température (RTD) en or en forme de serpent sur une seule zone de détection. Plusieurs géométries d'électrodes sont conçues et mises en œuvre de manière optimale sur un circuit imprimé flexible standard, et sont comparées pour évaluer l'effet d'une zone de détection donnée sur la sensibilité du biocapteur à l'aide de diverses techniques de mesure et de circuits personnalisés. Le circuit imprimé de l'électrode est connecté à un circuit imprimé personnalisé contenant les circuits de détection pour la mesure de l'impédance, du pH et de la température. Dans la deuxième contribution, pour une détection d'impédance entièrement intégrée, un amplificateur à verrouillage CMOS (LIA) personnalisé est conçu et fabriqué dans une technologie CMOS de 0,18 µm pour surveiller la croissance bactérienne dans divers environnements à l'aide d'une technique de mesure d'impédance multifréquence. En termes de conception de circuit, un nouvel amplificateur de transimpédance capacitif (CTIA) entièrement différentiel, à faible bruit, avec Chopper stabilisation et S/H dans l'étage de sortie pour maximiser le SNR, est inclus dans la conception LIA proposée. Les autres composants principaux du LIA sont un filtre passe-bande avec des fréquences centrales sélectionnables de 1, 2, 4 et 10 kHz, un amplificateur de gain programmable (PGA) qui offre six gains variables allant de 6 dB à 67 dB pour ajuster le gain dans une plage raisonnable pour détecter le signal d'entrée sans saturer le système, un mélangeur, et un filtre passe-bas avec une largeur de bande de 40 Hz. La sensibilité globale du LIA est de 240 mV/nA avec un courant détectable minimal de 1 pA, un bruit référencé à l'entrée de 58 pA/Hz et une consommation d'énergie totale de 817,56 µW. Comparé à d'autres solutions de la littérature, ce nouveau système donne un dispositif très précis, à faible bruit et à faible consommation d'énergie pour surveiller l'activité microbienne à de faibles concentrations en mesurant l'impédance résultant des métabolites ioniques libérés. Pour relever le troisième défi critique, les circuits de lecture des capteurs de pH et de température sont fabriqués à l'aide de composants disponibles dans le commerce. Un circuit de mesure du pH est conçu en utilisant un amplificateur opérationnel avec un courant de polarisation d'entrée très faible. De plus, un circuit en pont de Wheatstone avec un réseau de résistances est conçu pour mesurer la température en se reliant à l'électrode de température RTD comme une valeur de résistance inconnue. Le microcontrôleur 8 bits reçoit le signal filtré, amplifié et numérise et traite les données du capteur. Le prototype a été utilisé avec succès pour effectuer des mesures de croissance bactérienne in vitro. Dans l'ensemble, il s'agit du premier système qui fournit un biocapteur multimodal de haute précision, à faible consommation d'énergie, à faible coût, à faible bruit, léger et non invasif pour la surveillance de la culture bactérienne. Ce système peut faire des mesures dans un très petit volume grâce à un microsystème de mesure d'impédance intégré. Ainsi, il peut être utilisé pour la surveillance des paramètres environnementaux, y compris le pH et la température, en utilisant des électrodes et des capteurs de haute précision conçus et fabriqués de manière optimale. / This research is funded by the SMAART-NSERC CREATE Program and the Sentinel North Strategy at Université Laval. This project aimed to develop a multi-sensing biosensor prototype used for monitoring bacterial growth as well as their environmental growth parameters, including pH and temperature, in diverse environments and remote locations such as Canada's north. Measuring the activity of microorganisms, such as bacteria, at very low temperatures can be extremely challenging due to their low metabolism and much slower growth rate. Indeed, monitoring their functions requires high-precision tools. Furthermore, when the temperature or pH of the growth medium goes beyond the optimal range, the microorganism's growth is hindered. As a result, monitoring the environmental parameters and ecological factors, such as pH and temperature, is critical because they directly impact bacterial growth. Another critical component for improving measurement sensitivity is the optimal design and scaling of sensing electrodes. Sensing electrode downsizing can enable high-throughput sensing in microbiology applications, and enable measurements with tiny volume sampling. Finally, a light-weight and inexpensive microscale system would allow easy transportation in remote areas. We, therefore, designed and fabricated a novel multimodal high-precision, low-power, and light-weight biosensor to interface with bacteria colonies while addressing all the critical challenges mentioned above. As the first contribution, to increase the sensitivity of measurements, not only the material of the electrodes but also their scaling and miniaturization are addressed and evaluated. The prototype uses multiple microscale electrodes integrated into a single sensing area to precisely measure impedance, pH, and ambient temperature changes caused by microbial activities. This unique design includes the optimally designed gold-plated interdigitated electrodes (AuIDEs), Iridium oxide (IrO₂)-based pH electrodes, and the snaked-shape gold resistance-temperature detector (RTD) electrodes on a single sensing area. Multiple electrode geometries are optimally designed and implemented on a standard flexible PCB and are compared to evaluate the effect of a given sensing area on the sensitivity of the biosensor employing various measurement techniques and customized circuits. The electrode's PCB is connected to a custom-designed PCB containing the sensing circuits for impedance, pH, and temperature measurement. As the second contribution, for fully integrated impedance sensing, a custom CMOS lock-in amplifier (LIA) is designed and fabricated in a 0.18 µm CMOS technology to perform bacterial growth monitoring in diverse environments using a multi-frequency impedance measurement technique. In terms of circuit design, a novel fully differential, low-noise capacitive transimpedance amplifier (CTIA) with chopper stabilization and S/H in the output stage to maximize SNR is included in the proposed LIA design. The other major components of the LIA are a band-pass filter with selectable center frequencies of 1, 2, 4, and 10 kHz, a programmable gain amplifier (PGA) that offers six variable gains ranging from 6 dB to 67 dB to adjust the gain within a reasonable range to detect the input signal without saturating the system, a mixer, and a low-pass filter with a bandwidth of 40 Hz. The overall sensitivity of the LIA is 240 mV/nA with a minimum detectable current of 1 pA, input-referred noise of 58 pA/Hz, and a total power consumption of 817.56 µW. Compared to other solutions in the literature, this novel system results in a highly precise, low-noise, and low-power consumption device for monitoring microbial activity at low concentrations by measuring the impedance as a result of released ionic metabolites. To address the third critical challenge, the reading circuits of the pH and temperature sensors are fabricated using off-the-shelf components. A pH measuring circuit is designed using an operational amplifier with a very low input-bias-current. Furthermore, a Wheatstone bridge circuit with a network of resistors is designed to measure temperature by linking to the RTD temperature electrode as an unknown resistor value. The 12-bit microcontroller receives the filtered and boosted signal and digitizes and processes the sensor's data. The prototype was successfully used to perform bacterial growth measurements in vitro. Overall, this is the novel system that provides a high-precision, low-power consumption, low-cost, low-noise, lightweight, and non-invasive multimodal biosensor for bacterial culture monitoring at very small volume through a custom integrated impedance measurement microsystem, as well as environmental parameter monitoring, including pH and temperature, employing optimally designed and fabricated electrodes and high-precision sensors.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/117824
Date13 December 2023
CreatorsHosseini, Seyedeh Nazila
ContributorsGosselin, Benoit, Messaddeq, Younès
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 134 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0046 seconds