Return to search

Notch Regulation of Adam12 Expression in Glioblastoma Multiforme

Glioblastoma is the most common malignant brain tumor, accounting for 17% of all primary brain tumors in the United States. Despite the available surgical, radiation, and chemical therapeutic options, the invasive and infiltrative nature of the tumor render current treatment options minimally effective. Recent reports have identified multiple regulators of glioblastoma progression and invasiveness. It has been demonstrated that ADAM12, A Disintegrin And Metalloproteinase encoded by ADAM12 gene, is over-expressed in glioblastoma and directly correlated with tumor proliferation. Additionally, dysregulation of the Notch signaling pathway has been implicated in the pathogenesis of many gliomas. Lastly, an evolving role of microRNAs, small noncoding RNAs, in carcinogenesis is progressively growing. A recent study has identified ADAM12 as a notch-related gene, and another demonstrated that inhibition of notch signaling decreased glioblastoma recurrence. However the mechanisms of regulation are still unknown. In this study, we hypothesize that direct downregulation of microRNA-29, downstream of over-expression of notch enhances glioblastoma malignancy through upregulation of ADAM12. Although our data demonstrate upregulation of Notch1, its downstream target HES1, and ADAM12 in U87MG glioblastoma cell line. Expression of the cleaved intracellular Notch1 was not detected. Furthermore, we were unable to demonstrate an inhibitory effect of ɣ-secretase inhibitor on Notch signaling, likely reflecting the requirement for modifying culturing conditions or detection in our assays. Furthermore, miR-29 was detected in glioblastoma cells. The expression of miR-29 was further elevated by ɣ-secretase inhibitor treatment, suggesting a role for Notch1 inhibition on miR-29 expression. Although no conclusive results are shown in our work, a role of Notch1 through miR-29 is implicated in the pathogenesis of glioblastoma pathogenesis warranting further investigation into the role downstream target genes in the Notch signaling pathway.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-2049
Date01 January 2012
CreatorsAlsyaideh, Ala'a S.
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.0022 seconds