Return to search

Contribution à la modélisation physique du dosage des actinides par microanalyse électronique / Contribution to the physical modeling of the proportioning of actinides by electron probe microanalysis

L'analyse par microsonde électronique (EPMA) permet de quantifier, avec une grande précision, les concentrations élémentaires d'échantillons de compositions inconnues. Elle permet, par exemple, de quantifier les actinides présents dans les combustibles nucléaires neufs ou irradiés, d'aider à la gestion des déchets nucléaires ou encore de dater certaines roches. Malheureusement, ces analyses quantitatives ne sont pas toujours réalisables dû à l'indisponibilité des étalons de référence pour certains actinides. Afin de pallier cette difficulté, une méthode d'analyse dite « sans standard » peut-être employée au moyen d'étalons virtuels. Ces derniers sont obtenus à partir de formules empiriques ou à partir de calculs basés sur des modèles théoriques. Toutefois, ces calculs requièrent la connaissance de paramètres physiques généralement mal connus, comme c'est le cas pour les sections efficaces de production de rayons X. La connaissance précise de ces sections efficaces est requise dans de nombreuses applications telles que dans les codes de transport de particules et dans les simulations Monte-Carlo. Ces codes de calculs sont très utilisés en médecine et particulièrement en imagerie médicale et dans les traitements par faisceau d'électrons. Dans le domaine de l'astronomie, ces données sont utilisées pour effectuer des simulations servant à prédire les compositions des étoiles et des nuages galactiques ainsi que la formation des systèmes planétaires.Au cours de ce travail, les sections efficaces de production des raies L et M du plomb, du thorium et de l'uranium ont été mesurées par impact d'électrons sur des cibles minces autosupportées d'épaisseur variant de 0,2 à 8 nm. Les résultats expérimentaux ont été comparés avec les prédictions théoriques de sections efficaces d'ionisation calculées grâce à l'approximation de Born en ondes distordues (DWBA) et avec les prédictions de formules analytiques utilisées dans les applications pratiques. Les sections efficaces d'ionisation ont été converties en sections efficaces de productions de rayons X grâce aux paramètres de relaxation atomique extraits de la littérature. Les résultats théoriques du modèle DWBA sont en excellents accords avec les résultats expérimentaux. Ceci permet de confirmer les prédictions de ce modèle et de valider son utilisation pour le calcul de standards virtuels.Les prédictions de ce modèle ont été intégrées dans le code Monte-Carlo PENELOPE afin de calculer l'intensité de rayons X produite par des standards pur d'actinides. Les calculs ont été réalisés pour les éléments dont le numéro atomique est 89 ≤ Z ≤ 99 et pour des tensions d'accélération variant du seuil d'ionisation jusque 40 kV, par pas de 0,5 kV. Pour une utilisation pratique, les intensités calculées pour les raies L et M les plus intenses ont été regroupées dans une base de données.Les prédictions des standards virtuels ainsi obtenus ont été comparées avec des mesures effectuées sur des échantillons de composition connue (U, UO2, ThO2, ThF4, PuO2…) et avec les données acquises lors de précédentes campagnes de mesures. Le dosage des actinides à l'aide de ces standards virtuels a montré un bon accord avec les résultats attendus. Ceci confirme la fiabilité des standards virtuels développés et démontre que la quantification des actinides par microsonde électronique est réalisable sans standards d'actinides et avec un bon niveau de confiance. / Electron probe microanalysis (EPMA) is used to quantify with a high accuracy the amount of different elements present on a sample of unknown composition. EPMA is largely used to quantify the amount of actinides present in fresh and irradiated fuels, to manage waste disposal and to date rocks. However, quantitative EPMA is not always possible to achieve for these materials due to the lack of suitable reference standards for the radionuclides. To overcome this difficulty, standardless methods of analysis are employed with mean of virtual calculated standards. These calculated standards are generally obtained from empirical formulae based on experimental extrapolations or from theoretical calculations that require physical parameters which are poorly known as it is the case for the X-ray production cross section.The accurate knowledge of these cross sections is required in many applications such as in particle transport code and in Monte Carlo simulations. The computer simulations are widely used in the medical field and particularly in medical imaging and in electron beam therapy. In the field of astronomy, these data are used to perform simulations that predict the compositions of stars and galactic clouds, and the formation of planetary systems.In the present work, L- and M-shell absolute x-ray production cross sections were determined experimentally for elements lead, thorium and uranium by electron impact using ultrathin self-supporting targets with thickness varying from 0.2 to 8 nm. The measured cross sections have been compared, with the distorted-wave Born approximation (DWBA) calculated by Bote et al. and with the predictions of analytical formulae widely used in practical applications. For the conversion of inner-shell ionization cross sections into x-ray production cross sections, atomic relaxation parameters were extracted from the literature. The predictions of the DWBA calculations are in excellent agreement with our measured x-ray production cross sections. This confirms the predictive results of this model and its usefulness for the calculation of virtual standards.The DWBA calculations were used into the Monte Carlo simulation code PENELOPE to calculate the X-ray intensity produced by pure actinide standards. The X-ray intensities were calculated for elements with atomic number 89 ≤ Z ≤ 99 and for accelerating voltage ranging from the ionization threshold up to 40 kV with a step of 0.5 kV. For a practical use, the calculated intensities for the most intense L and M lines were stored in a database.The predictions of our calculated standards have been compared with the x-ray intensity of known composition actinide samples (such as U, UO2, ThO2, ThF4, PuO2…) and with the data acquired during previous measurement projects. Actinide quantifications performed by virtual standards were found to be in fair agreement with the expected results. This confirms the reliability of the developed virtual standards and demonstrates that actinide quantification by EPMA can now be possible to perform without material actinide standards and with a good level of accuracy.

Identiferoai:union.ndltd.org:theses.fr/2014MON20211
Date26 September 2014
CreatorsMoy, Aurélien
ContributorsMontpellier 2, Merlet, Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds