Return to search

Applying microarray‐based techniques to study gene expression patterns: a bio‐computational approach / Anwendung von Mikroarrayanalysen um Genexpressionsmuster zu untersuchen: Ein bioinformatischer Ansatz

The regulation and maintenance of iron homeostasis is critical to human health. As a constituent of hemoglobin, iron is essential for oxygen transport and significant iron deficiency leads to anemia. Eukaryotic cells require iron for survival and proliferation. Iron is part of hemoproteins, iron-sulfur (Fe-S) proteins, and other proteins with functional groups that require iron as a cofactor. At the cellular level, iron uptake, utilization, storage, and export are regulated at different molecular levels (transcriptional, mRNA stability, translational, and posttranslational). Iron regulatory proteins (IRPs) 1 and 2 post-transcriptionally control mammalian iron homeostasis by binding to iron-responsive elements (IREs), conserved RNA stem-loop structures located in the 5’- or 3‘- untranslated regions of genes involved in iron metabolism (e.g. FTH1, FTL, and TFRC). To identify novel IRE-containing mRNAs, we integrated biochemical, biocomputational, and microarray-based experimental approaches. Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Methods In this project response to the iron treatment was examined under different conditions using bioinformatical methods. This would improve our understanding of an iron regulatory network. For these purposes we used microarray gene expression data. To identify novel IRE-containing mRNAs biochemical, biocomputational, and microarray-based experimental approaches were integrated. IRP/IRE messenger ribonucleoproteins were immunoselected and their mRNA composition was analysed using an IronChip microarray enriched for genes predicted computationally to contain IRE-like motifs. Analysis of IronChip microarray data requires specialized tool which can use all advantages of a customized microarray platform. Novel decision-tree based algorithm was implemented using Perl in IronChip Evaluation Package (ICEP). Results IRE-like motifs were identified from genomic nucleic acid databases by an algorithm combining primary nucleic acid sequence and RNA structural criteria. Depending on the choice of constraining criteria, such computational screens tend to generate a large number of false positives. To refine the search and reduce the number of false positive hits, additional constraints were introduced. The refined screen yielded 15 IRE-like motifs. A second approach made use of a reported list of 230 IRE-like sequences obtained from screening UTR databases. We selected 6 out of these 230 entries based on the ability of the lower IRE stem to form at least 6 out of 7 bp. Corresponding ESTs were spotted onto the human or mouse versions of the IronChip and the results were analysed using ICEP. Our data show that the immunoselection/microarray strategy is a feasible approach for screening bioinformatically predicted IRE genes and the detection of novel IRE-containing mRNAs. In addition, we identified a novel IRE-containing gene CDC14A (Sanchez M, et al. 2006). The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip, but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls (Vainshtein Y, et al., 2010). / Die Regulierung und Aufrechterhaltung der Eisen-Homeostase ist bedeutend für die menschliche Gesundheit. Als Bestandteil des Hämoglobins ist es wichtig für den Transport von Sauerstoff, ein Mangel führt zu Blutarmut. Eukaryotische Zellen benötigen Eisen zum Überleben und zum Proliferieren. Eisen ist am Aufbau von Hämo- und Eisenschwefelproteinen (Fe-S) beteiligt und kann als Kofaktor dienen. Die Aufnahme, Nutzung, Speicherung und der Export von Eisen ist zellulär auf verschiedenen molekularen Ebenen reguliert (Transkription, mRNA-Level, Translation, Protein-Level). Die iron regulatory proteins (IRPs) 1 und 2 kontrollieren die Eisen-Homeostase in Säugetieren posttranslational durch die Bindung an Iron-responsive elements (IREs). IREs sind konservierte RNA stem-loop Strukturen in den 5' oder 3' untranslatierten Bereichen von Genen, die im Eisenmetabolismus involviert sind (z.B. FTH1, FTL und TFRC). In dieser Arbeit wurden biochemische und bioinformatische Methoden mit Microarray-Experimenten kombiniert, um neue mRNAs mit IREs zu identifizieren. Genexpressionsstudien verbessern unser Verständnis über die komplexen Zusammenhänge in genregulatorischen Netzwerken. Das komplexe Design von Microarrays, deren Produktion und Manipulation sind dabei die limitierenden Faktoren bezüglich der Datenqualität. Die Verwendung von angepassten DNA Microarrays verbessert häufig die Datenqualität, falls entsprechende Analysemöglichkeiten für diese Arrays existieren. Methoden Um unser Verständnis von eisenregulierten Netzwerken zu verbessern, wurde im Rahmen dieses Projektes die Auswirkung einer Behandlung mit Eisen bzw. von Knockout Mutation unter verschiedenen Bedingungen mittels bioinformatischer Methoden untersucht. Hierfür nutzen wir Expressionsdaten aus Microarray-Experimenten. Durch die Verknüpfung von biochemischen, bioinformatischen und Microarray Ansätzen können neue Proteine mit IREs identifiziert werden. IRP/IRE messenger Ribonucleoproteine wurden immunpräzipitiert. Die Zusammensetzung der enthaltenen mRNAs wurde mittels einem IronChip Microarray analysiert: Für diesen Chip wurden bioinformatisch Gene vorhergesagt, die IRE-like Motive aufweisen. Der Chip wurde mit solchen Oligonucleotiden beschichtet und durch Hybridisierung überprüft, ob die präzipitierten mRNA sich hieran binden. Die Analyse der erhaltenen Daten erfordert ein spezialisiertes Werkzeug um von allen Vorteilen der angepassten Microarrays zu profitieren. Ein neuer Entscheidungsbaum-basierter Algorithmus wurde in Perl im IronChip Evaluation Package (ICEP) implementiert. Ergebnisse Aus großen Sequenz-Datenbanken wurden IRE-like Motive identifiziert. Dazu kombiniert der Algorithmus, insbesondere RNA-Primärsequenz und RNA-Strukturdaten. Solche Datenbankanalysen tendieren dazu, eine große Anzahl falsch positiver Treffer zu generieren. Daher wurden zusätzliche Bedingungen formuliert, um die Suche zu verfeinern und die Anzahl an falsch positiven Treffer zu reduzieren. Die angepassten Suchkriterien ergaben 15 IRE-like Motive. In einem weiteren Ansatz verwendeten wir eine Liste von 230 IRE-like Sequenzen aus UTR-Datenbanken. Daraus wurden 6 Sequenzen ausgewählt, die auch im unteren Teil stabil sind (untere Helix über 6 bp stabil). Die korrespondierenden Expressed Sequence Tags (ESTs) wurden auf die humane oder murine Version des IronChips aufgetragen. Die Microarray Ergebnisse wurden mit dem ICEP Programm ausgewertet. Unsere Ergebnisse zeigen, dass die Immunpräzipitation mit anschließender Microarrayanalyse ein nützlicher Ansatz ist, um bioinformatisch vorhergesagte IRE-Gene zu identifizieren. Darüber hinaus ermöglicht uns dieser Ansatz die Detektion neuer mRNAs, die IREs enthalten, wie das von uns gefundene Gen CDC14A (Sanchez et al., 2006). ICEP ist ein optimiertes Programmpaket aus Perl Programmen (Vainshtein et al., BMC Bioinformatics, 2010). Es ermöglicht die einfache Auswertung von Microarray Daten mit dem Fokus auf selbst entwickelten Microarray Designs. ICEP diente für die statistische und bioinformatische Analyse von selbst entwickelten IronChips, kann aber auch leicht an die Analyse von oligonucleotidbasierten oder cDNA Microarrays adaptiert werden. ICEP nutzt einen Entscheidungsbaum-basierten Algorithmus um die Qualität zu bewerten und führt eine robuste Analyse basierend auf Chipeigenschaften, wie mehrfachen Wiederholungen, Signal/Rausch Verhältnis, Hintergrund und Negativkontrollen durch.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4336
Date January 2010
CreatorsVainshtein, Yevhen
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds