Return to search

Compréhension et prédiction des réponses de capteurs chimiques de gaz à surface de matériaux sensibles : application aux polysiloxanes fonctionnalisés. / No title available

Le but de l'étude est de comprendre et de prédire les performances de détection en phase gazeuse des capteurs chimiques à surface de matériaux sensibles. Les travaux ont porté sur des microbalances à quartz revêtues de polysiloxanes fonctionnalisés. Des mesures à l'équilibre, en exposant ces capteurs à différentes vapeurs organiques, ont mis en évidence la sélectivité des matériaux employés. Pour rationaliser ces résultats, les étapes impliquées dans la détection ont été examinées. Des mesures par PM-IRRAS ont permis de montrer la proportionnalité de la réponse vis-à-vis de la quantité d'analyte absorbé. Des affinités en phase condensée ont été déterminées par une nouvelle méthode par RMN d’études de mélanges sans solvant. L'application de cette méthode à des composés modèles a validé le calcul de l'enthalpie de mélange par l'approche de Hansen. Celle-ci permet également d’obtenir calculer les coefficients de Hansen des matériaux sensibles avec des méthodes de contributions de groupes. Enfin, sur ces résultats, un modèle numérique a été construit pour calculer a priori la réponse d'un capteur à partir de la formule chimique des composés sensible et de l'espèce détectée. / The aim of this study is to understand and model the responses of coated chemical sensors for gas phase detection. The work exposed here focuses on quartz crystal microbalance (QCM) coated with functionalized polysiloxanes. Measurements were carried with the QCM exposed to organic vapours when equilibrium was reached. It has been shown that selectivity depends on the material used. To understand that selectivity, each step involved in the detection has been investigated. First of all, with PM-IRRAS, we verified that the frequency shift was proportional to the amount of absorbed analyte. Then, affinity in liquid phase has been determined through a new methodology by NMR. It has also been used, on model system to prove the applicability of Hansen solubility coefficient to calculate mixing free enthalpy. For polymers, those coefficients have been determined using NMR combined with group contribution methods. Based on these descriptors, a numerical model has been built to calculate a priori the performance of a sensor based on, the chemical structure of the sensitive material and of the detected compound.

Identiferoai:union.ndltd.org:theses.fr/2011TOUR4051
Date15 December 2011
CreatorsKlingenfus, Jérôme
ContributorsTours, Palmas, Pascal
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds