The building blocks of human tissues are cells. The cells interact and respond to the characteristics of their local microenvironment. The cellular microenvironment is formed by three main components, the extracellular matrix, neighbouring cells and signalling molecules. Particularly, the extracellular matrix and neighbouring cells impose boundary conditions that limits the cell volume and cell spreading. However, these characteristics are often not present in traditional in vitro models, where cells experience a stiff and vast environment. An approach to improve in vitro models is to use hydrogels, soft and highly hydrated polymers. Through chemical modifications, polymers naturally found in the extracellular matrix can be functionalized to form crosslinked hydrogels. Moreover, these functionalities can also be used to prepare micropatterns, micrometre sized cell adhesive areas on the hydrogels. These micropatterns guide the cell shape and permit the study of the cell response to these changes in shape, which has been observed in e.g. endothelial cells from various origins. Taken all together, the aim of this work was to develop a hydrogel-based cell culture scaffold that permits the control of the spatial adhesion of brain endothelial cells in order to study the morphological effects on these cells and contribute to the understanding of the function of brain endothelial cells in health and disease. This thesis demonstrates the functionalization of hyaluronic acid, a naturally occurring extracellular matrix polymer, to prepare photocrosslinkable hydrogels. Furthermore, through photolithography, micropatterns of cell adhesive peptides were prepared on these hydrogels. Brain microvascular endothelial cells, a highly specialized type of endothelial cells, adhered to the micropatterns, and the effect on their alignment depending on the micropatterned sized was studied. Furthermore, changes in their alignment were also observed when exposed to different glucose concentration.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-460490 |
Date | January 2022 |
Creators | Porras Hernández, Ana Maria |
Publisher | Uppsala universitet, Mikrosystemteknik, Uppsala University, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds