Return to search

Ciliary micropillar fluidic chip capture exosomes for drug resistant cells’ response to nanoparticle therapy test

In this dissertation, an exosome capturing ciliary micropillar array microfluidics is introduced and applied to evaluate the response of resistant cancer cells under nanoparticle encapsulated chemotherapy. Cancer cells are able to develop different mechanisms to resist therapeutic treatment, frequently causing chemotherapy failure. Active drug expulsion is one of the usual resisting schemes to reduce intracellular drug accumulation to a non-effective level. Evidence has suggested a potential exosomal pathway is used by multi-drug resistant (MDR) cancer cells to expel drugs. Here I study the exosomes derived from MDR cancer cells treated by nanotherapeutics aiming to establish the correlation between nanotherapeutics and exosomal pathway for drug expulsion. The outcome would boost further understanding of cancer MDR, and in turn direct the development of pharmaceutical nanoparticles to overcome MDR cancer.
To effectively isolate exosomes for drug expulsion evaluation, a ciliary micropillar structure is fabricated employing microelectromechanical systems (MEMS) and metal assisted chemical etching (MACE) techniques. The ciliary micropillar is fabricated in two major steps: deep silicon etch (DSE) for pillars followed by a MACE process to etch nanowires on the pillars. The concept of using MACE as an alternative to DSE is also explored to reduce fabrication cost. With optimized parameters, it shows a comparable result to DSE.
COMSOL simulation revealed that ciliated micropillars exhibited a unique advantage as a unit structure for capturing small particles in fluid flow, according to particle filtration theory. A nanowire layer with high permittivity allows fluid streamlines to pass through, and increases interaction with particle carrying fluid to increase the probability of particle interception. Nanowires on the pillar can trap specific sized particles due to their characteristic dimension. Thanks to the weaker stability of porous silicon nanowires, trapped particles can then be released by dissolving these nanowires without damage to the particles themselves. A microfluidic chip is fabricated with an optimized circular micropillar arrangement for resistance reduction, and its particle filtration performance is demonstrated by processing model cell culture medium.
The device is applied to study MDR cells’ response to micelle encapsulated paclitaxel treatment. Cell culture medium from sensitive and MDR variant of MDA-MB-231 cells treated with pure and capsulated drugs are processed through the device for exosome isolation. Drug volume in collected exosomes is determined after measurement. By measuring drug efflux through exosomes, it is determined that MDA-MB-231MDR cells do use an exosomal pathway to expel drugs, but other mechanisms are also at play. Nanoparticle encapsulation results in higher drug concentration in exosomes partly because the origin of exosomes and nanoparticle intake through endocytosis share some similar route. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23302
Date24 February 2014
CreatorsWang, Zongxing
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.002 seconds