Les interactions entre du Fe(II) en solution et une montmorillonite sont étudiées dans des conditions anoxiques et à température ambiante, sur une échelle de temps variant de l'heure à la semaine. Le Fe2+ s'adsorbe sur les sites d'échange cationique de l'argile avec la même affinité que le Ca2+ ; en présence de chlore, le Fe(II) forme des paires ioniques, FeCl+, qui s'adsorbent avec une affinité comparable à celles de CaCl+ et MgCl+. Les simulations montrent qu'en fond anionique chloré concentré (comme l'eau de mer) les ions monovalents (Na+ et paires ioniques du type CaCl+ et MgCl+) sont majoritaires sur les sites d'échange cationique. Le Fe2+ s'adsorbe sur les surfaces de bordure de la montmorillonite avec une affinité très forte. Cette adsorption spécifique peut être modélisée convenablement avec des modèles simples de complexation de surface. Le Fe2+ s'adsorbe sur l'argile avec une affinité d'environ 1000 fois plus forte que celle du Zn2+. Des expériences couplées d'adsorption, de titrage, de dissolution et de spectroscopie Mössbauer montrent que l'adsorption spécifique du Fe2+ est due à plusieurs réactions distinctes : une adsorption compétitive avec remplacement de cations présents sur les surfaces de bordure ou dans la structure (ex : Mg2+, Zn2+) ; une adsorption coopérative avec H4SiO4, ce mécanisme étant compatible avec la précipitation de surface d'une phase Fe - Si ; un mécanisme d'adsorption suivi d'une oxydation du Fe2+ en Fe3+, cette réaction libérant deux H+ en solution par Fe2+ adsorbé. Ces phénomènes ne peuvent pas tous être pris en compte dans les modèles classiques de complexation de surface. Une approche nouvelle pour les argiles est donc développée pour modéliser les interactions solutés - argiles, basée sur une approche morphologique et structurale de l'argile. Les surfaces de la montmorillonite sont caractérisées par deux méthodes indépendantes, la microscopie à force atomique (AFM) et l'adsorption de gaz à très basse pression, qui donnent le même résultat pour les surfaces de bordure : 8,5 m2 g-1. L'étude théorique de la structure de l'interface argiles - solutés montre qu'elle ne porte pas moins de 27 sites réactionnels différents pour les interactions argile - H+. Le modèle MUSIC est utilisé pour prédire leur réactivité. L'excellent accord entre les données expérimentales de titrage potentiométrique et leur simulation nous encourage à poursuivre dans cette voie et à compléter le modèle pour prédire les interactions surface - cations métalliques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00710111 |
Date | 07 July 2003 |
Creators | Tournassat, Christophe |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds