Fluorescence microscopy is an invaluable technique for studying the intricate process of organism development. The acquisition process, however, is associated with the fundamental trade-off between the quality and reliability of the acquired data. On one hand, the goal of capturing the development in its entirety, often times across multiple spatial and temporal scales, requires extended acquisition periods. On the other hand, high doses of light required for such experiments are harmful for living samples and can introduce non-physiological artifacts in the normal course of development. Conventionally, a single set of acquisition parameters is chosen in the beginning of the acquisition and constitutes the experimenter’s best guess of the overall optimal configuration within the aforementioned trade-off. In the paradigm of adaptive microscopy, in turn, one aims at achieving more efficient photon budget distribution by dynamically adjusting the acquisition parameters to the changing properties of the sample. In this thesis, I explore the principles of adaptive microscopy and propose a range of improvements for two real imaging scenarios.
Chapter 2 summarizes the design and implementation of an adaptive pipeline for efficient observation of the asymmetrically dividing neurogenic progenitors in Zebrafish retina. In the described approach the fast and expensive acquisition mode is automatically activated only when the mitotic cells are present in the field of view. The method illustrates the benefits of the adaptive acquisition in the common scenario of the individual events of interest being sparsely distributed throughout the duration of the acquisition.
Chapter 3 focuses on computational aspects of segmentation-based adaptive schemes for efficient acquisition of the developing Drosophila pupal wing. Fast sample segmentation is shown to provide a valuable output for the accurate evaluation of the sample morphology and dynamics in real time. This knowledge proves instrumental for adjusting the acquisition parameters to the current properties of the sample and reducing the required photon budget with minimal effects to the quality of the acquired data.
Chapter 4 addresses the generation of synthetic training data for learning-based methods in bioimage analysis, making them more practical and accessible for smart microscopy pipelines. State-of-the-art deep learning models trained exclusively on the generated synthetic data are shown to yield powerful predictions when applied to the real microscopy images. In the end, in-depth evaluation of the segmentation quality of both real and synthetic data-based models illustrates the important practical aspects of the approach and outlines the directions for further research.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80379 |
Date | 12 August 2022 |
Creators | Dibrov, Alexandr |
Contributors | Sbalzarini, Ivo, Wählby, Carolina, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds