Return to search

Lanthanide-encoded Polysterene Microspheres for Mass Cytometry-based Bioassays

This thesis describes the synthesis and characterization of metal-encoded polystyrene microspheres with a narrow size distribution designed for mass cytometry-based immuno- and oligonucleotide-assays. These particles were prepared by multiple stage dispersion polymerization techniques using polyvinylpyrrolidone (PVP) as a steric stabilizer.
As a cytometeric technique, mass cytometry necessitated metal-encoded microspheres to perform the same roles of fluorescent microspheres used in conventional flow cytometry. The first role of the microsphere was to be able to act as a platform (classifier microspheres) for bioassays. Secondly, the microspheres should be suitable for mass cytometry machine calibration as standards. To perform these roles, metal-encoded microspheres were required to have certain size, functionality and metal content criteria. Lanthanide elements were chosen as the metals for encoding the microspheres for their low natural abundance in biological systems and for their similar chemistry.
My goal was to employ two-stage dispersion polymerization, of styrene in ethanol, to introduce the lanthanide salts along with excess acrylic acid in the second stage, one hour after the initiation. Acrylic acid deemed to serve as a ligand for the lanthanide ions, through its carbonyl group, so the lanthanide ions get incorporated into the microsphere while acrylic acid is copolymerizing with styrene. Using two-stage dispersion polymerization, I could synthesize lanthanide encoded microspheres with narrow size distribution and high lanthanide content. However the lanthanide content distributions were unexpectedly much broader than the size distribution obtained. In addition, I could not attach biomolecules to the surface of such particles.
In an attempt to improve the characteristics of these microspheres, I employed modified versions of multiple stage dispersion polymerization and seeded emulsion polymerization to grow functional polymer shell on the surface of the particles prepared by dispersion polymerization. Moreover, I coated the lanthanide encoded microspheres with silica shell which enabled me to grow another layer of functional-silica. Consequently, I could use these particles as classifier microspheres for mass cytometry-based immunoassays as well as fluorescence-based oligonucleotide-assays.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31669
Date05 January 2012
CreatorsAbdelrahman, Ahmed I.
ContributorsWinnik, Mitchell A.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds