Les propriétés texturales des yogourts brassés dépendent de la composition du mélange laitier, des conditions du traitement thermique et de l’acidification, mais aussi des conditions de brassage industriel. Contrairement au yogourt ferme qui est acidifié directement dans les pots, le yogourt brassé est acidifié en cuve, puis subit des opérations de brassage, de pompage, de lissage et de refroidissement. Or, la littérature rapporte peu d’étude représentative des conditions industrielles de brassage puisqu’il est difficile de reproduire la séquence d'opérations en laboratoire. Un brassage manuel (cuillère, disque perforé, tige agitatrice) ou un lissage à la seringue sont régulièrement utilisés en laboratoire pour simuler le brassage. De plus, les informations fournies par la littérature expliquent principalement l’impact d’une seule opération de brassage sur quelques propriétés texturales et à un seul jour d’entreposage. Le but de ce projet de thèse était d’étudier les opérations séquentielles de brassage, de lissage et de refroidissement dans des conditions similaires à l’industrie afin de mieux comprendre leur impact sur la qualité d’un yogourt brassé sans gras. Pour la première fois, un système de brassage technique simulant des conditions industrielles, à l’échelle pilote, a été développé pour étudier l’impact des opérations individuelles et séquentielles de brassage, de lissage et de refroidissement. Les résultats obtenus ont permis de déterminer que ce sont les opérations de lissage et de refroidissement, comparativement au brassage en cuve, qui ont le plus d’impact sur les propriétés texturales des yogourts analysés après 1 jour d’entreposage. L’importance de la séquence opérationnelle a aussi été démontrée par l’utilisation d’un lissage avant ou après le refroidissement. Au cours des 22 jours d’entreposage, les propriétés rhéologiques et physiques des yogourts étaient différentes selon les paramètres opérationnels utilisés lors du brassage. Par exemple, l’utilisation d’un l’échangeur de chaleur à plaques, comparativement à un échangeur de chaleur tubulaire, a favorisé la diminution de la synérèse, mais a diminué la viscosité et la consistance du yogourt. L’impact de la température de lissage a ensuite été approfondi en adaptant le système de brassage technique pour lisser le yogourt à 6 températures, entre 10 et 35 °C. Le comportement des propriétés rhéologiques et physiques du yogourt a alors été décrit, par des régressions linéaires multiples, selon la température de lissage et la durée de l’entreposage (jusqu’à 22 jours). La synérèse, la viscosité et la consistance étaient plus sensibles à la température de lissage, contrairement à la fermeté et au temps d’écoulement qui étaient plus sensibles à la durée de l’entreposage. Une basse température de lissage a permis de diminuer la synérèse, alors que l’augmentation des autres propriétés a été favorisée par un lissage à 25-30 °C. Au-delà de 30 °C, la synérèse était maximale et les autres propriétés ont eu tendance à diminuer. Finalement, un deuxième système de brassage technique a été développé à l’échelle laboratoire et a permis d’étudier l’impact de la température de lissage sur les propriétés microstructurales d’un gel acidifié. De plus, une nouvelle approche expérimentale d’analyse d’images dynamiques a été développée pour visualiser et caractériser les microgels laitiers. Pendant l’entreposage, la taille des microgels et leur rugosité (irrégularité à la surface du microgel) ont augmenté alors que le pourcentage total d’aire des pores (espace entre les microgels) a diminué. Ces résultats expliqueraient principalement l’augmentation de la synérèse, de la fermeté et du G’ pendant l’entreposage des gels lissés. Les microgels obtenus par le lissage à 35 °C avaient une rugosité maximale plus élevée, comparativement à ceux obtenus à 13 et 22 °C, et cela expliquerait la viscosité plus faible des gels laitiers lissés à 35 °C. L’approche originale de cette thèse par l’utilisation d’un système de brassage technique (échelle pilote et laboratoire) simulant des conditions industrielles facilitera le transfert des résultats à l’industrie. Les systèmes de brassage technique ont permis de quantifier l’importance des effets individuels et séquentiels des opérations de brassage sur les propriétés rhéologiques, physiques et microstructurales d’un yogourt sans gras. L’ensemble des résultats a démontré que la température de lissage est un levier technologique permettant de mieux contrôler les propriétés texturales et microstructurales du yogourt. La caractérisation innovatrice des microgels laitiers par l’analyse d’images dynamiques amène une nouvelle perception visuelle des microgels et permet une meilleure compréhension des changements de propriétés rhéologiques et physiques qui se produisent durant le brassage et l’entreposage du yogourt brassé. / The textural properties of stirred yogurts depend on the composition of the dairy mixture, the conditions of the heat treatment and the acidification, but also the conditions of industrial stirring. Unlike firm yogurt, which is acidified directly in the jars, the stirred yogurt is acidified in the vat, followed by stirring, pumping, smoothing and cooling. However, the literature reports little representative study of industrial stirring conditions since it is difficult to reproduce the sequence of operations in the laboratory. Manual stirring (spoon, perforated disc, stirring rod) or smoothing with a syringe are regularly used in the laboratory to simulate stirring. In addition, the information provided by the literature mainly explains the impact of a single stirring operation on a few textural properties and a single day of storage. The purpose of this thesis project was to study sequential stirring, smoothing and cooling operations in industry-like conditions to better understand their impact on the quality of a nonfat stirred yogurt. For the first time, a technical scale unit, simulating industrial conditions, has been developed to study the impact of individual and sequential stirring, smoothing and cooling operations. The results obtained made it possible to determine that it is the smoothing and cooling operations, compared to the stirring in vat, that have the greatest impact on the textural properties of the yogurts analyzed after 1 day of storage. The importance of the operational sequence has also been demonstrated by the use of smoothing before or after cooling. During the 22 days of storage, the rheological and physical properties of the yogurts were different according to the operational parameters used during the stirring. For example, the use of a plate heat exchanger, as compared to a tubular heat exchanger, has contributed to a decrease in syneresis, but has decreased the viscosity and consistency of the yogurt. The knowledge of the impact of the smoothing temperature was then studied by adapting the technical scale unit to smooth the yogurt at 6 temperatures, between 10 and 35°C. The behavior of the rheological and physical properties of yogurt was then described, by multiple linear regressions, according to the smoothing temperature and the duration of storage (up to 22 days). Syneresis, viscosity, and consistency were more sensitive to smoothing temperature, whereas firmness and flow time were more sensitive to the duration of storage. A low smoothing temperature made it possible to reduce syneresis, whereas the increase in the other properties was promoted by smoothing at 25-30°C. Above 30°C, syneresis was maximal and other properties tended to decrease. Finally, a second technical scale unit was developed at the laboratory scale and allowed studying the impact of the smoothing temperature on the microstructural properties of an acidified gel. In addition, a new experimental dynamic image analysis approach has been developed to visualize and characterize dairy microgels. During storage, the microgels size and their roughness (irregularity on the microgel surface) increased while the total percentage of pore area (space between microgels) decreased. These results would mainly explain the increase in syneresis, firmness and G' during the storage of smoothed gels. The microgels obtained by smoothing at 35°C had a higher maximum roughness, compared to those obtained at 13 and 22°C, and this would explain the lower viscosity of the dairy gels smoothed at 35°C. The original approach of this thesis by the use of a technical scale unit (pilot and laboratory scale) simulating industrial conditions will facilitate the transfer of the results to the industry. Technical stirring unit have quantified the importance of the individual and sequential effects of stirring operations on the rheological, physical and microstructural properties of a nonfat yogurt. All the results showed that the smoothing temperature is a technological tool allowing to better control the textural and microstructural properties of yogurt. The innovative characterization of dairy microgels by dynamic image analysis brings a new visual perception of microgels and provides a better understanding of the changes in rheological and physical properties that occur during stirring and storage of the stirred yogurt.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/36617 |
Date | 24 September 2019 |
Creators | Guénard Lampron, Valérie |
Contributors | Villeneuve, Sébastien, St-Gelais, Daniel, Turgeon, Sylvie |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxiv, 151 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0185 seconds