Return to search

A Comparsion of Multiple Imputation Methods for Missing Covariate Values in Recurrent Event Data

Multiple imputation (MI) is a commonly used approach to impute missing data. This thesis studies missing covariates in recurrent event data, and discusses ways to include the survival outcomes in the imputation model. Some MI methods under consideration are the event indicator D combined with, respectively, the right-censored event times T, the logarithm of T and the cumulative baseline hazard H0(T). After imputation, we can then proceed to the complete data analysis. The Cox proportional hazards (PH) model and the PWP model are chosen as the analysis models, and the coefficient estimates are of substantive interest. A Monte Carlo simulation study is conducted to compare different MI methods, the relative bias and mean square error will be used in the evaluation process. Furthermore, an empirical study based on cardiovascular disease event data which contains missing values will be conducted. Overall, the results show that MI based on the Nelson-Aalen estimate of H0(T) is preferred in most circumstances.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-256602
Date January 2015
CreatorsHuo, Zhao
PublisherUppsala universitet, Statistiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds