Return to search

Improving Machine Learning Through Oracle Learning

The following dissertation presents a new paradigm for improving the training of machine learning algorithms, oracle learning. The main idea in oracle learning is that instead of training directly on a set of data, a learning model is trained to approximate a given oracle's behavior on a set of data. This can be beneficial in situations where it is easier to obtain an oracle than it is to use it at application time. It is shown that oracle learning can be applied to more effectively reduce the size of artificial neural networks, to more efficiently take advantage of domain experts by approximating them, and to adapt a problem more effectively to a machine learning algorithm.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1842
Date12 March 2007
CreatorsMenke, Joshua Ephraim
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds