1 |
Improving Machine Learning Through Oracle LearningMenke, Joshua Ephraim 12 March 2007 (has links) (PDF)
The following dissertation presents a new paradigm for improving the training of machine learning algorithms, oracle learning. The main idea in oracle learning is that instead of training directly on a set of data, a learning model is trained to approximate a given oracle's behavior on a set of data. This can be beneficial in situations where it is easier to obtain an oracle than it is to use it at application time. It is shown that oracle learning can be applied to more effectively reduce the size of artificial neural networks, to more efficiently take advantage of domain experts by approximating them, and to adapt a problem more effectively to a machine learning algorithm.
|
2 |
Approximation de modèles dynamiques de grande dimension sur intervalles de fréquences limités / Frequency-limited model approximation of large-scale dynamical modelsVuillemin, Pierre 24 November 2014 (has links)
Les systèmes physiques sont représentés par des modèles mathématiques qui peuvent être utilisés pour simuler, analyser ou contrôler ces systèmes. Selon la complexité du système qu’il est censé représenter, un modèle peut être plus ou moins complexe. Une complexité trop grande peut s’avérer problématique en pratique du fait des limitations de puissance de calcul et de mémoire des ordinateurs. L’une des façons de contourner ce problème consiste à utiliser l’approximation de modèles qui vise à remplacer le modèle complexe par un modèle simplifié dont le comportement est toujours représentatif de celui du système physique.Dans le cas des modèles dynamiques Linéaires et Invariants dans le Temps (LTI), la complexité se traduit par une dimension importante du vecteur d’état et on parle alors de modèles de grande dimension. L’approximation de modèle, encore appelée réduction de modèle dans ce cas, a pour but de trouver un modèle dont le vecteur d’état est plus petit que celui du modèle de grande dimension tel que les comportements entrée-sortie des deux modèles soient proches selon une certaine norme. La norme H2 a été largement considérée dans la littérature pour mesurer la qualité d’un modèle réduit. Cependant, la bande passante limitée des capteurs et des actionneurs ainsi que le fait qu’un modèle est généralement représentatif d’un système physique dans une certaine bande fréquentielle seulement, laissent penser qu’un modèle réduit dont le comportement est fidèle au modèle de grande dimension dans un intervalle de fréquences donné,peut être plus pertinent. C’est pourquoi, dans cette étude, la norme H2 limitée en fréquence,ou norme H2, Ω, qui est simplement la restriction de la norme H2 sur un intervalle de fréquences Ω, a été considérée. En particulier, le problème qui vise à trouver un modèle réduit minimisant la norme H2, Ω de l’erreur d’approximation avec le modèle de grande dimension a été traité.Deux approches ont été proposées dans cette optique. La première est une approche empirique basée sur la modification d’une méthode sous-optimale pour l’approximation H2. En pratique, ses performances s’avèrent intéressantes et rivalisent avec certaines méthodes connues pour l’approximation de modèles sur intervalles de fréquences limités.La seconde est une méthode d’optimisation basée sur la formulation pôles-résidus de la norme H2, Ω. Cette formulation généralise naturellement celle existante pour la norme H2 et permet également d’exprimer deux bornes supérieures sur la norme H∞ d’un modèle LTI, ce qui est particulièrement intéressant dans le cadre de la réduction de modèle. Les conditions d’optimalité du premier ordre pour le problème d’approximation optimale en norme H2, Ω ont été exprimées et utilisées pour créer un algorithme de descente visant à trouver un minimum local au problème d’approximation. Couplée aux bornes sur la norme H∞ de l’erreur d’approximation,cette méthode est utilisée pour le contrôle de modèle de grande dimension.D’un point de vue plus pratique, l’ensemble des méthodes proposées dans cette étude ont été appliquées, avec succès, dans un cadre industriel comme élément d’un processus global visant à contrôler un avion civil flexible. / Physical systems are represented by mathematical models in order to be simulated, analysed or controlled. Depending on the complexity of the physical system it is meant to represent and on the way it has been built, a model can be more or less complex. This complexity can become an issue in practice due to the limited computational power and memory of computers. One way to alleviate this issue consists in using model approximation which is aimed at finding a simpler model that still represents faithfully the physical system.In the case of Linear Time Invariant (LTI) dynamical models, complexity translates into a large dimension of the state vector and one talks about large-scale models. Model approximation is in this case also called model reduction and consists in finding a model with a smaller state vector such that the input-to-output behaviours of both models are close with respect to some measure. The H2-norm has been extensively used in the literature to evaluate the quality of a reduced-order model. Yet, due to the limited band width of actuators, sensors and the fact that models are generally representative on a bounded frequency interval only, a reduced-order model that faithfully reproduces the behaviour of the large-scale one over a bounded frequency interval only, may be morerelevant. That is why, in this study, the frequency-limited H2-norm, or H2,Ω-norm, which is the restriction of theH2-norm over a frequency interval, has been considered. In particular, the problem of finding a reduced-ordermodel that minimises the H2, Ω-norm of the approximation error with the large-scale model has been addressed here. For that purpose, two approaches have been developed. The first one is an empirical approach based on the modification of a sub-optimal H2 model approximation method. Its performances are interesting in practice and compete with some well-known frequency-limited approximation methods. The second one is an optimisationmethod relying on the poles-residues formulation of the H2,Ω-norm. This formulation naturally extends the oneexisting for the H2-norm and can also be used to derive two upper bounds on the H∞-norm of LTI dynamical models which is of particular interest in model reduction. The first-order optimality conditions of the optimal H2,Ω approximation problem are derived and used to built a complex-domain descent algorithm aimed at finding a local minimum of the problem. Together with the H∞ bounds on the approximation error, this approach isused to perform control of large-scale models. From a practical point of view, the methods proposed in this study have been successfully applied in an industrial context as a part of the global process aimed at controlling a flexible civilian aircraft.
|
3 |
Approximations d'ordre réduit des équations de Saint-Venant pour la modélisation de vallée hydroélectrique / Reduced order approximations of the Saint-Venant equations for hydropower valley modelingDalmas, Violaine 10 December 2018 (has links)
L'hydroélectricité est la première des énergies renouvelables électriques. Sa production repose en partie sur des centrales au fil de l'eau dont les capacités de modulation sont encore faiblement exploitées. Les capacités d'ajustement des centrales hydrauliques sont d'autant plus essentielles aujourd'hui que la pénétration d'énergies intermittentes dans un mix énergétique décarboné est indispensable.Dans cette thèse, nous nous intéressons aux centrales au fil de l'eau turbinant le débit de cours d'eau aux marnages limités. Les enjeux de sûreté, notamment liés au multi-usage de l'eau, ainsi que la perspective de moduler les débits turbinés nous ont amenés à considérer le problème de la modélisation des écoulements dans les canaux reliant les centrales au fil de l'eau. Les équations de Saint-Venant sont les plus pertinentes pour ce type de modélisation. Nous avons proposé plusieurs approches à partir de ces dernières pour caractériser analytiquement la dynamique de l'écoulement à des variations de débits turbinés. Nous avons considéré la dynamique du système autour d'un régime fluvial stationnaire non-uniforme caractéristique des configurations hydroélectriques. La première approche est basée sur une approximation basses fréquences. La seconde approche est basée sur une méthode de réduction de modèle avec une paramétrisation selon le débit support. Une troisième approche est proposée en considérant explicitement la recherche d'une solution approximée des équations de Saint-Venant linéarisées autour d'une configuration hydroélectrique. Un critère spatio-fréquentiel est alors introduit, l'existence d'un biais en basses fréquences nous conduit à proposer un modèle d'ordre réduit dont la dynamique basses fréquences est imposée selon les résultats de la première approche. La solution exprimée sous forme de fonctions de transfert, comme pour les deux précédentes approches, met en évidence explicitement la présence de modes de résonance/anti-résonance. Finalement, nous illustrons les résultats vis à vis de simulations non-linéaires et de données réelles et proposons une régulation de niveau basée sur cette dernière approche. / New challenges arise from energy transition toward a more sustainable energy mix. Hydropower is already the main source of renewable electricity. In order to integrate a massive increase in generation of renewable intermitent energies, improving the flexibility of run-of-the-river hydropower plants becomes essential. In this thesis, we focus on run-of-the river power plants facing water level constraints. Safety issues, partly due to the multiple uses of water, and the opportunity to modulate turbined flow rates have led us to adress the problem of flow modelisation in open channels that connect run-of-the rivers facilities with each others. An accurate model is provided by the Saint-Venant equations. From these latters, we have proposed different approaches to characterize analytically the flow dynamics in response to turbined flow variations. The system dynamics have been considered around a subcritical stationary non-uniform regime typical of hydroelectric configuration. The first approach is based on a low frequency approximation. The second approach is based on a parametric model reduction technique. By seeking explicitly an approximate solution to the linearized Saint-Venant equations around an hydroelectric configuration, we have proposed a third approach. A space-frequency criterion is introduced, which shows a bias in low frequency. Results of the first approach are then used to propose a reduced order model asymptotically exact in low frequency. As for the two other approaches, the solution takes the shape of parametric transfer functions. Resonance/anti-resonance modes explicitly appear. Finally, comparisons with non-linear simulations taking into account actual real data are discussed and a water level controller is developed based on the last approach.
|
4 |
Um método social-evolucionário para geração de rankings que apoiem a recomendação de eventos / A social-evolutionary method for generating rankings that support the event recommendationPascoal, Luiz Mário Lustosa 22 August 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-03-24T21:17:09Z
No. of bitstreams: 3
Dissertação - Luiz Mario Lustosa Pascoal - 2014.pdf: 7280181 bytes, checksum: 68a6ac0602e3e51f6e6952bbd6916150 (MD5)
FunctionApproximator.zip: 2288624 bytes, checksum: 178c2e6a0b080b3d0548836974016236 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-03-24T21:19:16Z (GMT) No. of bitstreams: 3
Dissertação - Luiz Mario Lustosa Pascoal - 2014.pdf: 7280181 bytes, checksum: 68a6ac0602e3e51f6e6952bbd6916150 (MD5)
FunctionApproximator.zip: 2288624 bytes, checksum: 178c2e6a0b080b3d0548836974016236 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-24T21:19:16Z (GMT). No. of bitstreams: 3
Dissertação - Luiz Mario Lustosa Pascoal - 2014.pdf: 7280181 bytes, checksum: 68a6ac0602e3e51f6e6952bbd6916150 (MD5)
FunctionApproximator.zip: 2288624 bytes, checksum: 178c2e6a0b080b3d0548836974016236 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-08-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / With the development of web 2.0, social networks have achieved great space on the
internet, with that many users provide information and interests about themselves. There
are expert systems that make use of the user’s interests to recommend different products,
these systems are known as Recommender Systems. One of the main techniques of a
Recommender Systems is the Collaborative Filtering (User-based) which recommends
products to users based on what other similar people liked in the past. Therefore, this
work presents model approximation of functions that generates rankings, that through
a Genetic Algorithm, is able to learn an approximation function composed by different
social variables, customized for each Facebook user. The learned function must be able
to reproduce a ranking of people (friends) originally created with user’s information, that
apply some influence in the user’s decision. As a case study, this work discusses the
context of events through information regarding the frequency of participation of some
users at several distinct events. Two different approaches on learning and applying the
approximation function have been developed. The first approach provides a general model
that learns a function in advance and then applies it in a set of test data and the second
approach presents an specialist model that learns a specific function for each test scenario.
Two proposals for evaluating the ordering created by the learned function, called objective
functions A and B, where the results for both objective functions show that it is possible
to obtain good solutions with the generalist and the specialist approaches of the proposed
method. / Com o desenvolvimento da Web 2.0, as redes sociais têm conquistado grande espaço na
internet, com isso muitos usuários acabam fornecendo diversas informações e interesses
sobre si mesmos. Existem sistemas especialistas que fazem uso dos interesses do usuário
para recomendar diferentes produtos, esses sistemas são conhecidos como Sistemas de
Recomendação. Uma das principais técnicas de um Sistema de Recomendação é a Filtragem
Colaborativa (User-based) que recomenda produtos para seus usuários baseados
no que outras pessoas similares à ele tenham gostado no passado. Portanto, este trabalho
apresenta um modelo de aproximação de funções geradora de rankings que, através
de um Algoritmo Genético, é capaz de aprender uma função de aproximação composta
por diferentes atributos sociais, personalizada para cada usuário do Facebook. A função
aprendida deve ser capaz de reproduzir um ranking de pessoas (amigos) criado originalmente
com informações do usuário, que exercem certa influência na decisão do usuário.
Como estudo de caso, esse trabalho aborda o contexto de eventos através de informações
com relação a frequência de participação de alguns usuários em vários eventos distintos.
Foram desenvolvidas duas abordagens distintas para aprendizagem e aplicação da função
de aproximação. A primeira abordagem apresenta um modelo generalista, que previamente
aprende uma função e em seguida a aplica em um conjunto de dados de testes e a
segunda abordagem apresenta um modelo especialista, que aprende uma função específica
para cada cenário de teste. Também foram apresentadas duas propostas para avaliação
da ordenação criada pela função aprendida, denominadas funções objetivo A e B, onde
os resultados para ambas as funções objetivo A e B mostram que é possível obter boas
soluções com as abordagens generalista e especialista do método proposto.
|
5 |
Approximation des systèmes dynamiques à grande dimension et à dimension infinie / Large-scale and infinite dimensional dynamical model approximationPontes Duff Pereira, Igor 11 January 2017 (has links)
Dans le domaine de l’ingénierie (par exemple l’aéronautique, l’automobile, la biologie, les circuits), les systèmes dynamiques sont le cadre de base utilisé pour modéliser, contrôler et analyser une grande variété de systèmes et de phénomènes. En raison de l’utilisation croissante de logiciels dédiés de modélisation par ordinateur, la simulation numérique devient de plus en plus utilisée pour simuler un système ou un phénomène complexe et raccourcir le temps de développement et le coût. Cependant, le besoin d’une précision de modèle améliorée conduit inévitablement à un nombre croissant de variables et de ressources à gérer au prix d’un coût numérique élevé. Cette contrepartie justifie la réduction du modèle. Pour les systèmes linéaires invariant dans le temps, plusieurs approches de réduction de modèle ont été effectivement développées depuis les années 60. Parmi celles-ci, les méthodes basées sur l’interpolation se distinguent par leur souplesse et leur faible coût de calcul, ce qui en fait un candidat prédestiné à la réduction de systèmes véritablement à grande échelle. Les progrès récents démontrent des façons de trouver des paramètres de réduction qui minimisent localement la norme H2 de l’erreur d’incompatibilité. En général, une approximation d’ordre réduit est considérée comme un modèle de dimension finie. Cette représentation est assez générale et une large gamme de systèmes dynamiques linéaires peut être convertie sous cette forme, du moins en principe. Cependant, dans certains cas, il peut être plus pertinent de trouver des modèles à ordre réduit ayant des structures plus complexes. A titre d’exemple, certains systèmes de phénomènes de transport ont leurs valeurs singulières Hankel qui se décomposent très lentement et ne sont pas facilement approchées par un modèle de dimension finie. En outre, pour certaines applications, il est intéressant de disposer d’un modèle structuré d’ordre réduit qui reproduit les comportements physiques. C’est pourquoi, dans cette thèse, les modèles à ordre réduit ayant des structures de retard ont été plus précisément considérés. Ce travail a consisté, d’une part, à développer de nouvelles techniques de réduction de modèle pour des modèles à ordre réduit avec des structures de retard et, d’autre part, à trouver de nouvelles applications d’approximation de modèle. La contribution majeure de cette thèse couvre les sujets d’approximation et inclut plusieurs contributions au domaine de la réduction de modèle. Une attention particulière a été accordée au problème de l’approximation du modèle optimale pour les modèles structurés retardés. À cette fin, de nouveaux résultats théoriques et méthodologiques ont été obtenus et appliqués avec succès aux repères académiques et industriels. De plus, la dernière partie de ce manuscrit est consacrée à l’analyse de la stabilité des systèmes retardés par des méthodes interpolatoires. Certaines déclarations théoriques ainsi qu’une heuristique sont développées permettant d’estimer de manière rapide et précise les diagrammes de stabilité de ces systèmes. / In the engineering area (e.g. aerospace, automotive, biology, circuits), dynamical systems are the basic framework used for modeling, controlling and analyzing a large variety of systems and phenomena. Due to the increasing use of dedicated computer-based modeling design software, numerical simulation turns to be more and more used to simulate a complex system or phenomenon and shorten both development time and cost. However, the need of an enhanced model accuracy inevitably leads to an increasing number of variables and resources to manage at the price of a high numerical cost. This counterpart is the justification for model reduction. For linear time-invariant systems, several model reduction approaches have been effectively developed since the 60’s. Among these, interpolation-based methods stand out due to their flexibility and low computational cost, making them a predestined candidate in the reduction of truly large-scale systems. Recent advances demonstrate ways to find reduction parameters that locally minimize the H2 norm of the mismatch error. In general, a reduced-order approximation is considered to be a finite dimensional model. This representation is quite general and a wide range of linear dynamical systems can be converted in this form, at least in principle. However, in some cases, it may be more relevant to find reduced-order models having some more complex structures. As an example, some transport phenomena systems have their Hankel singular values which decay very slowly and are not easily approximated by a finite dimensional model. In addition, for some applications, it is valuable to have a structured reduced-order model which reproduces the physical behaviors. That is why, in this thesis, reduced-order models having delay structures have been more specifically considered. This work has focused, on the one hand, in developing new model reduction techniques for reduced order models having delay structures, and, on the other hand, in finding new applications of model approximation. The major contribution of this thesis covers approximation topics and includes several contributions to the area of model reduction. A special attention was given to the H2 optimal model approximation problem for delayed structured models. For this purpose, some new theoretical and methodological results were derived and successfully applied to both academic and industrial benchmarks. In addition, the last part of this manuscript is dedicated to the analysis of time-delayed systems stability using interpolatory methods. Some theoretical statements as well as an heuristic are developed enabling to estimate in a fast and accurate way the stability charts of those systems.
|
6 |
Stanovení únavových charakteristik betonu s využitím lomově-mechanických parametrů / Determination of Fatigue Characteristics of Concrete Using Fracture-Mechanics ParameteresŠimonová, Hana January 2013 (has links)
The topic of this PhD. thesis is the issue of determining fatigue characteristics of selected cement-based composites. First, the history of fatigue of metal is mentioned, and some basic notions related to fatigue are clarified. The thesis also summarizes current research in the field of cement-based composites fatigue, and failure mechanisms of plain concrete during static and dynamic tests are described. Furthermore, the thesis deals with the evaluation of static and dynamic experiments’ results with extensive series of C30/37 and C45/55 class concrete specimens. In order to achieve relevant fatigue test evaluation which takes into account the age of the specimens, a new correction procedure of the data measured based on the approximation of the basic fracture-mechanics parameters of tested materials over time was suggested and verified. The annexes of this thesis present complete data obtained during static and dynamic experiments.
|
Page generated in 0.1413 seconds