• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation des systèmes dynamiques à grande dimension et à dimension infinie / Large-scale and infinite dimensional dynamical model approximation

Pontes Duff Pereira, Igor 11 January 2017 (has links)
Dans le domaine de l’ingénierie (par exemple l’aéronautique, l’automobile, la biologie, les circuits), les systèmes dynamiques sont le cadre de base utilisé pour modéliser, contrôler et analyser une grande variété de systèmes et de phénomènes. En raison de l’utilisation croissante de logiciels dédiés de modélisation par ordinateur, la simulation numérique devient de plus en plus utilisée pour simuler un système ou un phénomène complexe et raccourcir le temps de développement et le coût. Cependant, le besoin d’une précision de modèle améliorée conduit inévitablement à un nombre croissant de variables et de ressources à gérer au prix d’un coût numérique élevé. Cette contrepartie justifie la réduction du modèle. Pour les systèmes linéaires invariant dans le temps, plusieurs approches de réduction de modèle ont été effectivement développées depuis les années 60. Parmi celles-ci, les méthodes basées sur l’interpolation se distinguent par leur souplesse et leur faible coût de calcul, ce qui en fait un candidat prédestiné à la réduction de systèmes véritablement à grande échelle. Les progrès récents démontrent des façons de trouver des paramètres de réduction qui minimisent localement la norme H2 de l’erreur d’incompatibilité. En général, une approximation d’ordre réduit est considérée comme un modèle de dimension finie. Cette représentation est assez générale et une large gamme de systèmes dynamiques linéaires peut être convertie sous cette forme, du moins en principe. Cependant, dans certains cas, il peut être plus pertinent de trouver des modèles à ordre réduit ayant des structures plus complexes. A titre d’exemple, certains systèmes de phénomènes de transport ont leurs valeurs singulières Hankel qui se décomposent très lentement et ne sont pas facilement approchées par un modèle de dimension finie. En outre, pour certaines applications, il est intéressant de disposer d’un modèle structuré d’ordre réduit qui reproduit les comportements physiques. C’est pourquoi, dans cette thèse, les modèles à ordre réduit ayant des structures de retard ont été plus précisément considérés. Ce travail a consisté, d’une part, à développer de nouvelles techniques de réduction de modèle pour des modèles à ordre réduit avec des structures de retard et, d’autre part, à trouver de nouvelles applications d’approximation de modèle. La contribution majeure de cette thèse couvre les sujets d’approximation et inclut plusieurs contributions au domaine de la réduction de modèle. Une attention particulière a été accordée au problème de l’approximation du modèle optimale pour les modèles structurés retardés. À cette fin, de nouveaux résultats théoriques et méthodologiques ont été obtenus et appliqués avec succès aux repères académiques et industriels. De plus, la dernière partie de ce manuscrit est consacrée à l’analyse de la stabilité des systèmes retardés par des méthodes interpolatoires. Certaines déclarations théoriques ainsi qu’une heuristique sont développées permettant d’estimer de manière rapide et précise les diagrammes de stabilité de ces systèmes. / In the engineering area (e.g. aerospace, automotive, biology, circuits), dynamical systems are the basic framework used for modeling, controlling and analyzing a large variety of systems and phenomena. Due to the increasing use of dedicated computer-based modeling design software, numerical simulation turns to be more and more used to simulate a complex system or phenomenon and shorten both development time and cost. However, the need of an enhanced model accuracy inevitably leads to an increasing number of variables and resources to manage at the price of a high numerical cost. This counterpart is the justification for model reduction. For linear time-invariant systems, several model reduction approaches have been effectively developed since the 60’s. Among these, interpolation-based methods stand out due to their flexibility and low computational cost, making them a predestined candidate in the reduction of truly large-scale systems. Recent advances demonstrate ways to find reduction parameters that locally minimize the H2 norm of the mismatch error. In general, a reduced-order approximation is considered to be a finite dimensional model. This representation is quite general and a wide range of linear dynamical systems can be converted in this form, at least in principle. However, in some cases, it may be more relevant to find reduced-order models having some more complex structures. As an example, some transport phenomena systems have their Hankel singular values which decay very slowly and are not easily approximated by a finite dimensional model. In addition, for some applications, it is valuable to have a structured reduced-order model which reproduces the physical behaviors. That is why, in this thesis, reduced-order models having delay structures have been more specifically considered. This work has focused, on the one hand, in developing new model reduction techniques for reduced order models having delay structures, and, on the other hand, in finding new applications of model approximation. The major contribution of this thesis covers approximation topics and includes several contributions to the area of model reduction. A special attention was given to the H2 optimal model approximation problem for delayed structured models. For this purpose, some new theoretical and methodological results were derived and successfully applied to both academic and industrial benchmarks. In addition, the last part of this manuscript is dedicated to the analysis of time-delayed systems stability using interpolatory methods. Some theoretical statements as well as an heuristic are developed enabling to estimate in a fast and accurate way the stability charts of those systems.
2

Commande dynamique de robots déformables basée sur un modèle numérique / Model-based dynamic control of soft robots

Thieffry, Maxime 16 October 2019 (has links)
Cette thèse s’intéresse à la modélisation et à la commande de robots déformables, c’est à dire de robots dont le mouvement se fait par déformation. Nous nous intéressons à la conception de lois de contrôle en boucle fermée répondant aux besoins spécifiques du contrôle dynamique de robots déformables, sans restrictions fortes sur leur géométrie. La résolution de ce défi soulève des questions théoriques qui nous amènent au deuxième objectif de cette thèse: développer de nouvelles stratégies pour étudier les systèmes de grandes dimensions. Ce manuscrit couvre l’ensemble du développement des lois de commandes, de l’étape de modélisation à la validation expérimentale. Outre les études théoriques, différentes plateformes expérimentales sont utilisées pour valider les résultats. Des robots déformables actionnés par câble et par pression sont utilisés pour tester les algorithmes de contrôle. A travers ces différentes plateformes, nous montrons que la méthode peut gérer différents types d’actionnement, différentes géométries et propriétés mécaniques. Cela souligne l’un des intérêts de la méthode, sa généricité. D’un point de vue théorique, les systèmes dynamiques à grande dimensions ainsi que les algorithmes de réduction de modèle sont étudiés. En effet, modéliser des structures déformables implique de résoudre des équations issues de la mécanique des milieux continus, qui sont résolues à l’aide de la méthode des éléments finis (FEM). Ceci fournit un modèle précis des robots mais nécessite de discrétiser la structure en un maillage composé de milliers d’éléments, donnant lieu à des systèmes dynamiques de grandes dimensions. Cela conduit à travailler avec des modèles de grandes dimensions, qui ne conviennent pas à la conception d’algorithmes de contrôle. Une première partie est consacrée à l’étude du modèle dynamique à grande dimension et de son contrôle, sans recourir à la réduction de modèle. Nous présentons un moyen de contrôler le système à grande dimension en utilisant la connaissance d’une fonction de Lyapunov en boucle ouverte. Ensuite, nous présentons des algorithmes de réduction de modèle afin de concevoir des contrôleurs de dimension réduite et des observateurs capables de piloter ces robots déformables. Les lois de contrôle validées sont basées sur des modèles linéaires, il s’agit d’une limitation connue de ce travail car elle contraint l’espace de travail du robot. Ce manuscrit se termine par une discussion qui offre un moyen d’étendre les résultats aux modèles non linéaires. L’idée est de linéariser le modèle non linéaire à grande échelle autour de plusieurs points de fonctionnement et d’interpoler ces points pour couvrir un espace de travail plus large. / This thesis focuses on the design of closed-loop control laws for the specific needs of dynamic control of soft robots, without being too restrictive regarding the robots geometry. It covers the entire development of the controller, from the modeling step to the practical experimental validation. In addition to the theoretical studies, different experimental setups are used to illustrate the results. A cable-driven soft robot and a pressurized soft arm are used to test the control algorithms. Through these different setups, we show that the method can handle different types of actuation, different geometries and mechanical properties. This emphasizes one of the interests of the method, its genericity. From a theoretical point a view, large-scale dynamical systems along with model reduction algorithms are studied. Indeed, modeling soft structures implies solving equations coming from continuum mechanics using the Finite Element Method (FEM). This provides an accurate model of the robots but it requires to discretize the structure into a mesh composed of thousands of elements, yielding to large-scale dynamical systems. This leads to work with models of large dimensions, that are not suitable to design control algorithms. A first part is dedicated to the study of the large-scale dynamic model and its control, without using model reduction. We present a way to control the large-scale system using the knowledge of an open-loop Lyapunov function. Then, this work investigates model reduction algorithms to design low order controllers and observers to drive soft robots. The validated control laws are based on linear models. This is a known limitation of this work as it constrains the guaranteed domain of the controller. This manuscript ends with a discussion that offers a way to extend the results towards nonlinear models. The idea is to linearize the large-scale nonlinear model around several operating points and interpolate between these points to cover a wider workspace.
3

Regularized Jackknife estimation with many instruments

Doukali, Mohamed 10 1900 (has links)
No description available.
4

Approximation de modèles dynamiques de grande dimension sur intervalles de fréquences limités / Frequency-limited model approximation of large-scale dynamical models

Vuillemin, Pierre 24 November 2014 (has links)
Les systèmes physiques sont représentés par des modèles mathématiques qui peuvent être utilisés pour simuler, analyser ou contrôler ces systèmes. Selon la complexité du système qu’il est censé représenter, un modèle peut être plus ou moins complexe. Une complexité trop grande peut s’avérer problématique en pratique du fait des limitations de puissance de calcul et de mémoire des ordinateurs. L’une des façons de contourner ce problème consiste à utiliser l’approximation de modèles qui vise à remplacer le modèle complexe par un modèle simplifié dont le comportement est toujours représentatif de celui du système physique.Dans le cas des modèles dynamiques Linéaires et Invariants dans le Temps (LTI), la complexité se traduit par une dimension importante du vecteur d’état et on parle alors de modèles de grande dimension. L’approximation de modèle, encore appelée réduction de modèle dans ce cas, a pour but de trouver un modèle dont le vecteur d’état est plus petit que celui du modèle de grande dimension tel que les comportements entrée-sortie des deux modèles soient proches selon une certaine norme. La norme H2 a été largement considérée dans la littérature pour mesurer la qualité d’un modèle réduit. Cependant, la bande passante limitée des capteurs et des actionneurs ainsi que le fait qu’un modèle est généralement représentatif d’un système physique dans une certaine bande fréquentielle seulement, laissent penser qu’un modèle réduit dont le comportement est fidèle au modèle de grande dimension dans un intervalle de fréquences donné,peut être plus pertinent. C’est pourquoi, dans cette étude, la norme H2 limitée en fréquence,ou norme H2, Ω, qui est simplement la restriction de la norme H2 sur un intervalle de fréquences Ω, a été considérée. En particulier, le problème qui vise à trouver un modèle réduit minimisant la norme H2, Ω de l’erreur d’approximation avec le modèle de grande dimension a été traité.Deux approches ont été proposées dans cette optique. La première est une approche empirique basée sur la modification d’une méthode sous-optimale pour l’approximation H2. En pratique, ses performances s’avèrent intéressantes et rivalisent avec certaines méthodes connues pour l’approximation de modèles sur intervalles de fréquences limités.La seconde est une méthode d’optimisation basée sur la formulation pôles-résidus de la norme H2, Ω. Cette formulation généralise naturellement celle existante pour la norme H2 et permet également d’exprimer deux bornes supérieures sur la norme H∞ d’un modèle LTI, ce qui est particulièrement intéressant dans le cadre de la réduction de modèle. Les conditions d’optimalité du premier ordre pour le problème d’approximation optimale en norme H2, Ω ont été exprimées et utilisées pour créer un algorithme de descente visant à trouver un minimum local au problème d’approximation. Couplée aux bornes sur la norme H∞ de l’erreur d’approximation,cette méthode est utilisée pour le contrôle de modèle de grande dimension.D’un point de vue plus pratique, l’ensemble des méthodes proposées dans cette étude ont été appliquées, avec succès, dans un cadre industriel comme élément d’un processus global visant à contrôler un avion civil flexible. / Physical systems are represented by mathematical models in order to be simulated, analysed or controlled. Depending on the complexity of the physical system it is meant to represent and on the way it has been built, a model can be more or less complex. This complexity can become an issue in practice due to the limited computational power and memory of computers. One way to alleviate this issue consists in using model approximation which is aimed at finding a simpler model that still represents faithfully the physical system.In the case of Linear Time Invariant (LTI) dynamical models, complexity translates into a large dimension of the state vector and one talks about large-scale models. Model approximation is in this case also called model reduction and consists in finding a model with a smaller state vector such that the input-to-output behaviours of both models are close with respect to some measure. The H2-norm has been extensively used in the literature to evaluate the quality of a reduced-order model. Yet, due to the limited band width of actuators, sensors and the fact that models are generally representative on a bounded frequency interval only, a reduced-order model that faithfully reproduces the behaviour of the large-scale one over a bounded frequency interval only, may be morerelevant. That is why, in this study, the frequency-limited H2-norm, or H2,Ω-norm, which is the restriction of theH2-norm over a frequency interval, has been considered. In particular, the problem of finding a reduced-ordermodel that minimises the H2, Ω-norm of the approximation error with the large-scale model has been addressed here. For that purpose, two approaches have been developed. The first one is an empirical approach based on the modification of a sub-optimal H2 model approximation method. Its performances are interesting in practice and compete with some well-known frequency-limited approximation methods. The second one is an optimisationmethod relying on the poles-residues formulation of the H2,Ω-norm. This formulation naturally extends the oneexisting for the H2-norm and can also be used to derive two upper bounds on the H∞-norm of LTI dynamical models which is of particular interest in model reduction. The first-order optimality conditions of the optimal H2,Ω approximation problem are derived and used to built a complex-domain descent algorithm aimed at finding a local minimum of the problem. Together with the H∞ bounds on the approximation error, this approach isused to perform control of large-scale models. From a practical point of view, the methods proposed in this study have been successfully applied in an industrial context as a part of the global process aimed at controlling a flexible civilian aircraft.
5

Essais en économetrie et économie de l'éducation

Tchuente Nguembu, Guy 07 1900 (has links)
No description available.
6

Misspecified financial models in a data-rich environment

Nokho, Cheikh I. 03 1900 (has links)
En finance, les modèles d’évaluation des actifs tentent de comprendre les différences de rendements observées entre divers actifs. Hansen and Richard (1987) ont montré que ces modèles sont des représentations fonctionnelles du facteur d’actualisation stochastique que les investisseurs utilisent pour déterminer le prix des actifs sur le marché financier. La littérature compte de nombreuses études économétriques qui s’intéressent à leurs estimations et à la comparaison de leurs performances, c’est-à-dire de leur capa- cité à expliquer les différences de rendement observées. Cette thèse, composée de trois articles, contribue à cette littérature. Le premier article examine l’estimation et la comparaison des modèles d’évaluation des actifs dans un environnement riche en données. Nous mettons en œuvre deux méthodes de régularisation interprétables de la distance de Hansen and Jagannathan (1997, HJ ci-après) dans un contexte où les actifs sont nombreux. Plus précisément, nous introduisons la régularisation de Tikhonov et de Ridge pour stabiliser l’inverse de la matrice de covariance de la distance de HJ. La nouvelle mesure, qui en résulte, peut être interprétée comme la distance entre le facteur d’actualisation d’un modèle et le facteur d’actualisation stochastique valide le plus proche qui évalue les actifs avec des erreurs contrôlées. Ainsi, ces méthodes de régularisation relâchent l’équation fondamentale de l’évaluation des actifs financiers. Aussi, elles incorporent un paramètre de régularisation régissant l’ampleur des erreurs d’évaluation. Par la suite, nous présentons une procédure pour estimer et faire des tests sur les paramètres d’un modèle d’évaluation des actifs financiers avec un facteur d’actualisation linéaire en minimisant la distance de HJ régularisée. De plus, nous obtenons la distribution asymptotique des estimateurs lorsque le nombre d’actifs devient grand. Enfin, nous déterminons la distribution de la distance régularisée pour comparer différents modèles d’évaluation des actifs. Empiriquement, nous estimons et comparons quatre modèles à l’aide d’un ensemble de données comportant 252 portefeuilles. Le deuxième article estime et compare dix modèles d’évaluation des actifs, à la fois inconditionnels et conditionnels, en utilisant la distance de HJ régularisée et 3 198 portefeuilles s’étendant de juillet 1973 à juin 2018. Ces portefeuilles combinent les portefeuilles bien connus triés par caractéristiques avec des micro-portefeuilles. Les micro-portefeuilles sont formés à l’aide de variables financières mais contiennent peu d’actions (5 à 10), comme indiqué dans Barras (2019). Par conséquent, ils sont analogues aux actions individuelles, offrent une grande variabilité de rendements et améliorent le pouvoir discriminant des portefeuilles classiques triés par caractéristiques. Parmi les modèles considérés, quatre sont des modèles macroéconomiques ou théoriques, dont le modèle de CAPM avec consommation (CCAPM), le modèle de CAPM avec consommation durable (DCAPM) de Yogo (2006), le modèle de CAPM avec capital humain (HCAPM) de Jagannathan and Wang (1996), et le modèle d’évaluation des actifs avec intermédiaires financiers (IAPM) de He, Kelly, and Manela (2017). Cinq modèles basés sur les anomalies sont considérés, tels que les modèles à trois (FF3) et à cinq facteurs (FF5) proposés par Fama and French, 1993 et 2015, le modèle de Carhart (1997) intégrant le facteur Momentum dans FF3, le modèle de liquidité de Pástor and Stambaugh (2003) et le modèle q5 de Hou et al. (2021). Le modèle de consommation de Lettau and Ludvigson (2001) utilisant des données trimestrielles est également estimé. Cependant, il n’est pas inclus dans les comparaisons en raison de la puissance de test réduite. Par rapport aux modèles inconditionnels, les modèles conditionnels tiennent compte des cycles économiques et des fluctuations des marchés financiers en utilisant les indices d’incertitude macroéconomique et financière de Ludvigson, Ma, and Ng (2021). Ces modèles conditionnels ont des erreurs de spécification considérablement réduites. Les analyses comparatives des modèles inconditionnels indiquent que les modèles macroéconomiques présentent globalement les mêmes pouvoirs explicatifs. De plus, ils ont un pouvoir explicatif global inférieur à celui des modèles basés sur les anomalies, à l’exception de FF3. L’augmentation de FF3 avec le facteur Momentum et de liquidité améliore sa capacité explicative. Cependant ce nouveau modèle est inférieur à FF5 et q5. Pour les modèles conditionnels, les modèles macroéconomiques DCAPM et HCAPM surpassent CCAPM et IAPM. En outre, ils ont des erreurs de spécification similaires à celles des modèles conditionnels de Carhart et de liquidité, mais restent en deçà des modèles FF5 et q5. Ce dernier domine tous les autres modèles. Le troisième article présente une nouvelle approche pour estimer les paramètres du facteur d’actualisation linéaire des modèles d’évaluation d’actifs linéaires mal spécifiés avec de nombreux actifs. Contrairement au premier article de Carrasco and Nokho (2022), cette approche s’applique à la fois aux rendements bruts et excédentaires. La méthode proposée régularise toujours la distance HJ : l’inverse de la matrice de second moment est la matrice de pondération pour les rendements bruts, tandis que pour les rendements excédentaires, c’est l’inverse de la matrice de covariance. Plus précisément, nous dérivons la distribution asymptotique des estimateurs des paramètres du facteur d’actualisation stochastique lorsque le nombre d’actifs augmente. Nous discutons également des considérations pertinentes pour chaque type de rendements et documentons les propriétés d’échantillon fini des estimateurs. Nous constatons qu’à mesure que le nombre d’actifs augmente, l’estimation des paramètres par la régularisation de l’inverse de la matrice de covariance des rendements excédentaires présente un contrôle de taille supérieur par rapport à la régularisation de l’inverse de la matrice de second moment des rendements bruts. Cette supériorité découle de l’instabilité inhérente à la matrice de second moment des rendements bruts. De plus, le rendement brut de l’actif sans risque présente une variabilité minime, ce qui entraîne une colinéarité significative avec d’autres actifs que la régularisation ne parvient pas à atténuer. / In finance, asset pricing models try to understand the differences in expected returns observed among various assets. Hansen and Richard (1987) showed that these models are functional representations of the discount factor investors use to price assets in the financial market. The literature counts many econometric studies that deal with their estimation and the comparison of their performance, i.e., how well they explain the differences in expected returns. This thesis, divided into three chapters, contributes to this literature. The first paper examines the estimation and comparison of asset pricing models in a data-rich environment. We implement two interpretable regularization schemes to extend the renowned Hansen and Jagannathan (1997, HJ hereafter) distance to a setting with many test assets. Specifically, we introduce Tikhonov and Ridge regularizations to stabilize the inverse of the covariance matrix in the HJ distance. The resulting misspecification measure can be interpreted as the distance between a proposed pricing kernel and the nearest valid stochastic discount factor (SDF) pricing the test assets with controlled errors, relaxing the Fundamental Equation of Asset Pricing. So, these methods incorporate a regularization parameter governing the extent of the pricing errors. Subsequently, we present a procedure to estimate the SDF parameters of a linear asset pricing model by minimizing the regularized distance. The SDF parameters completely define the asset pricing model and determine if a particular observed factor is a priced source of risk in the test assets. In addition, we derive the asymptotic distribution of the estimators when the number of assets and time periods increases. Finally, we derive the distribution of the regularized distance to compare comprehensively different asset pricing models. Empirically, we estimate and compare four empirical asset pricing models using a dataset of 252 portfolios. The second paper estimates and compares ten asset pricing models, both unconditional and conditional, utilizing the regularized HJ distance and 3198 portfolios spanning July 1973 to June 2018. These portfolios combine the well-known characteristic-sorted portfolios with micro portfolios. The micro portfolios are formed using firms' observed financial characteristics (e.g. size and book-to-market) but contain few stocks (5 to 10), as discussed in Barras (2019). Consequently, they are analogous to individual stocks, offer significant return spread, and improve the discriminatory power of the characteristics-sorted portfolios. Among the models, four are macroeconomic or theoretical models, including the Consumption Capital Asset Pricing Model (CCAPM), Durable Consumption Capital Asset Pricing Model (DCAPM) by Yogo (2006), Human Capital Capital Asset Pricing Model (HCAPM) by Jagannathan and Wang (1996), and Intermediary Asset pricing model (IAPM) by He, Kelly, and Manela (2017). Five anomaly-driven models are considered, such as the three (FF3) and Five-factor (FF5) Models proposed by Fama and French, 1993 and 2015, the Carhart (1997) model incorporating momentum into FF3, the Liquidity Model by Pástor and Stambaugh (2003), and the Augmented q-Factor Model (q5) by Hou et al. (2021). The Consumption model of Lettau and Ludvigson (2001) using quarterly data is also estimated but not included in the comparisons due to the reduced power of the tests. Compared to the unconditional models, the conditional ones account for the economic business cycles and financial market fluctuations by utilizing the macroeconomic and financial uncertainty indices of Ludvigson, Ma, and Ng (2021). These conditional models show significantly reduced pricing errors. Comparative analyses of the unconditional models indicate that the macroeconomic models exhibit similar pricing performances of the returns. In addition, they display lower overall explanatory power than anomaly-driven models, except for FF3. Augmenting FF3 with momentum and liquidity factors enhances its explanatory capability. However, the new model is inferior to FF5 and q5. For the conditional models, the macroeconomic models DCAPM and HCAPM outperform CCAPM and IAPM. Furthermore, they have similar pricing errors as the conditional Carhart and liquidity models but still fall short of the FF5 and q5. The latter dominates all the other models. This third paper introduces a novel approach for estimating the SDF parameters in misspecified linear asset pricing models with many assets. Unlike the first paper, Carrasco and Nokho (2022), this approach is applicable to both gross and excess returns as test assets. The proposed method still regularizes the HJ distance: the inverse of the second-moment matrix is the weighting matrix for the gross returns, while for excess returns, it is the inverse of the covariance matrix. Specifically, we derive the asymptotic distribution of the SDF estimators under a double asymptotic condition where the number of test assets and time periods go to infinity. We also discuss relevant considerations for each type of return and document the finite sample properties of the SDF estimators with gross and excess returns. We find that as the number of test assets increases, the estimation of the SDF parameters through the regularization of the inverse of the excess returns covariance matrix exhibits superior size control compared to the regularization of the inverse of the gross returns second-moment matrix. This superiority arises from the inherent instability of the second-moment matrix of gross returns. Additionally, the gross return of the risk-free asset shows minimal variability, resulting in significant collinearity with other test assets that the regularization fails to mitigate.

Page generated in 0.1214 seconds