Return to search

Automating the development of Metabolic Network Models using Abductive Logic Programming

The complexity of biological systems constitute a significant problem for the development of biological models. This inspired the creation of a few Computational Scientific Discovery systems that attempt to address this problem in the context of metabolomics through the use of computers and automation. These systems have important limitations, however, like limited revision and experiment design abilities and the inability to revise refuted models. The goal of this project was to address some of these limitations. The system developed for this project, "Huginn", was based on the use of Abductive Logic Programming to automate crucial development tasks, like experiment design, testing consistency of models with experimental results and revision of refuted models. The main questions of this project were (1) whether the proposed system can successfully develop Metabolic Network Models and (2) whether it can do it better than its predecessors. To answer these questions we tested Huginn in a simulated environment. Its task was to relearn the structures of disrupted fragments of a state-of-the-art model of yeast metabolism. The results of the simulations show that Huginn can relearn the structure of metabolic models, and that it can do it better than previous systems thanks to the specific features introduced in it. Furthermore, we show how the design of extended crucial experiments can be automated using Answer Set Programming for the first time.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:727971
Date January 2017
CreatorsRozanski, Robert
ContributorsKing, Ross
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/automating-the-development-of-metabolic-network-models-using-abductive-logic-programming(281edadb-4b80-4485-abe8-6966f3fc4ecc).html

Page generated in 0.0011 seconds