Return to search

Learning stochastic filtering

We quantify the performance of approximations to stochastic filtering by the Kullback- Leibler divergence to the optimal Bayesian filter. Using a two-state Markov process that drives a Brownian measurement process as prototypical test case, we compare two stochastic filtering approximations: a static low-pass filter as baseline, and machine learning of Volterra expansions using nonlinear Vector Auto-Regression (nVAR). We highlight the crucial role of the chosen performance metric, and present two solutions to the specific challenge of predicting a likelihood bounded between 0 and 1.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89184
Date19 March 2024
CreatorsRamakrishnan, Rahul O., Auconi, Andrea, Friedrich, Benjamin M.
PublisherEDP Sciences
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1286-4854, 31002, 10.1209/0295-5075/ac9d01, info:eu-repo/grantAgreement/Sächsischen Staatsministerium für Wissenschaft und Kunst/Forschungsprojektförderung Titelgruppe 70/100400118/

Page generated in 0.0016 seconds