Return to search

Modelos lineares mistos: estruturas de matrizes de variâncias e covariâncias e seleção de modelos. / Mixed linear models: structures of matrix of variances and covariances and selection of models.

É muito comum encontrar nas áreas agronômica e biológica experimentos cujas observações são correlacionadas. Porém, tais correlações, em tese, podem estar associadas às parcelas ou às subparcelas, dependendo do plano experimental adotado. Além disso, a metodologia de modelos lineares mistos vem sendo utilizada com mais freqüência, principalmente após os trabalhos de Searle (1988), Searle at al. (1992), Wolfinger (1993b) entre outros. O sucesso do procedimento de modelagem está fortemente associado ao exame dos efeitos aleatórios que devem permanecer no modelo e na possibilidade de se introduzir, no modelo, estruturas de variâncias e covariâncias das variáveis aleatórias que, para o modelo linear misto, podem estar inseridas no resíduo e, também, na parte aleatória associada ao fator aleatório conhecido. Nesse contexto, o Teste da Razão de Verossimilhança e o Critério de Akaike podem auxiliar na tarefa de escolha do modelo mais apropriado para análise dos dados, além de permitir verificar que escolhas de modelos inadequadas acarretam em conclusões divergentes em relação aos efeitos fixos do modelo. Com o desenvolvimento do Proc Mixed do SAS (Littel at al. 1996), utilizado neste trabalho, a análise desses experimentos, tratada pela metodologia modelos lineares mistos, tornou-se mais usual e segura. Com a finalidade de se atingir o objetivo deste trabalho, utilizaram-se dois exemplos (A e B) sobre a resposta da produtividade de três cultivares de trigo, em relação a níveis de irrigação por aspersão line-source. Foram criados e analisados 29 modelos para o Exemplo A e 16 modelos para o Exemplo B. Pôde-se verificar, para cada um dos exemplos, que as conclusões em relação aos efeitos fixos se modificaram de acordo com o modelo adotado. Notou-se, também, que o Critério de Akaike deve ser visto com cautela. Ao se comparar modelos similares entre os dois exemplos, ratificou-se a importância de se programar corretamente no Proc Mixed. Nesse contexto, conclui-se que é fundamental conduzir a análise de experimentos de forma ampla, buscando vários modelos e verificando quais têm lógica em relação ao plano experimental, evitando erros ao término da análise. / In Biology and Agronomy, experiments that produce correlated observations are often found. Theoretically, these correlations may be associated with whole-plots or subplots, according to the chosen experimental design. Also, the mixed linear model methodology is now being used much more frequently, especially after the works of Searle (1988), Searle et al. (1992) and Wolfinger (1993b), among others. The success of the modeling procedure is strongly associated with the examination of the random effects that must remain within the model and the possibility of introducing variance-covariance structures of random variables in the model. In the case of the mixed linear model, they may be included in the residual error or in the random part which is associated with the known random factor. In this context, the Likelihood Ratio Test and Akaike's Information Criterion can help in choosing the most appropriate model for data analysis. They also enable the verification of inadequate choice of models which can lead to divergent conclusions regarding the fixed effects of the model. With the development of the SAS Mixed Procedure (Little at al. 1996), which was used in this work, analysis of these experiments, conducted through the mixed linear model methodology, has become more usual and secure. In order to achieve the target of this work, two examples were utilized (A and B) involving the productivity response of three varieties of wheat, in regards to irrigation levels by line-source aspersion. Twenty-nine models for Example A and 16 models for Example B were created and analyzed. For each example, it was verified that conclusions regarding fixed effects changed according to the model adopted. It was also verified that Akaike’s Information Criterion must be regarded with caution. When comparing similar models between the two examples, the importance of correct programming in the Mixed Procedure was confirmed. In this context, it can be concluded that it is fundamental to conduct the experiment analysis in an ample manner, looking for various models and verifying which ones make sense according to the experimental plan, thus avoiding errors at analysis completion.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02012003-135234
Date27 September 2002
CreatorsCamarinha Filho, Jomar Antonio
ContributorsBarbin, Decio
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds