Return to search

Development and Evaluation of the Profile Synthesis Method for Approximate Floodplain Redelineation

In the United States, the floodplain maps used in the administration of the National Flood Insurance Program are created and maintained by the Federal Emergency Management Agency. Currently, a nationwide map modernization program is underway to convert the existing paper floodplain maps into a digital format, while continuing to improve the maps and expand the scope of the studies. The flood zones depicted on these maps are developed through engineering studies, using a variety of accepted methods to model and predict flood-prone areas. These methods are classified as detailed, limited detailed, or approximate, corresponding to varying levels of expense and accuracy. Current flood map revision activities across the nation typically consist of developing new hydraulic models, or reusing existing hydraulic model results in conjunction with new, more detailed LiDAR terrain models.

This research develops a profile synthesis method for redelineation of approximate flood boundaries, and evaluates the method's performance and usability. The profile synthesis method is shown to perform reliably on simple floodplain geometry, recreating a water surface profile based only on its floodplain boundaries. When applied to a real-world floodplain studied in a previous flood insurance study, the profile synthesis method is shown to perform adequately, with results comparable to an approximate hydraulic model developed in HEC-RAS. Methods similar to this profile synthesis method for reuse of existing approximate zone boundaries have not been widely documented or evaluated; nevertheless, methods such as this are believed to be common in the revision of approximate zone flood boundaries. As such, this work explores concepts which will be of interest to individuals actively involved in flood map revision and modernization. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35847
Date19 December 2007
CreatorsDickerson, Thomas Ashby
ContributorsCivil Engineering, Dymond, Randel L., Hancock, Kathleen L., Kibler, David F.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationTDickerson_Thesis_ETD.pdf

Page generated in 0.002 seconds