This thesis applies a numerical model to study the propagation of internal solitary wave based on a two-dimensional model developed by Lynett and Liu (2002) and modified by Cheng et al. (2005).The numerical model derived assumes weak nonlinearity and weak dispersion in a two-layer inviscid fluid system. The governing continuity and momentum equations are solved and the real topography is included in the wave model. In order to improve the accuracy of simulation, mixed-layer thickness is allowed to change from place to place. Initial conditions are modified so that wave forms of non-hyperbolic -secant functions and wave fronts taken by satellite can be used. The diffraction near the island of Dongsha is simulated, and results of both fixed and variable mixed-layer thickness are compared. Simulated waveform in MODIS images after 24 hours are compared with other wave fronts of the same image. Laterally, internal waves can become very wide when it is far away from its origin. The extra energy can be explained by nonlinear wave-wave interaction because the energy of large amplitude internal wave increases after interacting with smaller internal waves.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0213107-225446 |
Date | 13 February 2007 |
Creators | Fu, Ke-Shian |
Contributors | none, none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0213107-225446 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.1868 seconds