Les polymères à empreintes moléculaires (MIP) sont des matériaux synthétiques capables de mimer les anticorps biologiques. En effet, ils possèdent deux des principales caractéristiques de ces derniers, à savoir : la capacité de reconnaître et de se lier spécifiquement à des molécules cibles. De plus, leur synthèse facile, leur bas coût de production, leur haute spécificité et stabilité par rapport aux anticorps naturels font des MIP une alternative intéressante. En effet, les propriétés de reconnaissance moléculaire des MIP permettent d'envisager leur utilisation dans une vaste gamme d’applications. Ils sont ainsi largement exploités dans les sciences séparatives pour l'analyse d'échantillons environnementaux ou agro-alimentaires, ou comme élément de reconnaissance dans des biocapteurs. Récemment, des applications de ces matériaux dans les domaines biologiques et biomédicaux ont émergé comme pour la détection, l'extraction et l"élimination de molécules indésirables dans l'organisme, la vectorisation ou l'administration contrôlée des médicaments. Dans nos recherches, nous avons développé des MIP dégradables par voie biochimique ou enzymatique, ayant une application potentielle en tant que système de libération contrôlé de molécules. En général, les MIPs sont synthétisés par polymérisation radicalaire libre en utilisant une formulation composée de monomères fonctionnels, d'agents de réticulation, et d'une molécule cible servant à réaliser l'empreinte moléculaire. Dans ce travail de thèse, nous avons utilisé pour la synthèse de MIP dégradable des agents de réticulation clivables contenant, soit une fonction chimique dégradable par voie chimique ou enzymatique (ponts disulfures et phosphatediester), soit un disaccharide issus d'agro-ressources et pouvant être naturellement hydrolysé par des enzymes. En présence d'un réactif spécifique (agent réducteur ou enzyme), les liaisons dites "sensibles" aux réactifs chimiques ou enzymatiques peuvent être clivées, ce qui entraîne une dégradation de la matrice polymérique. Le polymère perdra alors sa capacité de reconnaissance et de liaison à la molécule cible et permettra la libération de celle-ci. Nous pensons donc, que les nouveaux MIP dégradables pourraient avoir un énorme potentiel comme vecteurs "intelligents" dans des applications médicales tels que les systèmes de libération contrôlée de médicament. Finalement, nous avons étudié la dégradation par des microorganismes de la structure de base de ce type de polymères, en utilisant comme modèles des chaines linéaires et réticulées. / Molecularly imprinted polymers (MIPs) are biomimetic synthetic receptors that possess two of the most important features of biological antibodies – the ability to recognize and bind specific target molecules. Owing to their easier preparation, lower cost, higher specifity and stability compared to antibodies, they have the potential to be widely applied for environemental and food analysis. Recently, MIPs also emerged in the biochemical field as diagnostic tools, chemicals traps to remove undesirable substance from the body, or drug delivery systems, where usually the combination of biocompatibility and degradability after its use is desirable. Here, we developed biochemically or enzymatically degradable MIPs, which have potential applications as activation-modulated drug delivery systems. In general, MIPs are prepared by radical polymerization of functional monomers and cross-linkers in the presence of a target molecule acting as template. Degradable MIPs were synthesized using cleavable cross-linkers containing a degradable group (disulfide bond or phosphate ester bond) or derived from a natural disaccharide. In the presence of a cleaving reagent (reducing agent or enzyme), the chemo or enzyme-sensitive bond could be cleaved, resulting in the degradation of the polymer matrix. The degraded polymers looses the binding sites structure resulting in the loss of recognition and binding capacity towards the target molecules, and thus in the release of bound molecules. These degradable MIPs provide new opportunities as “smart” vectors for controlled delivery of active molecules in biomedical applications. Finally, the biodegradation of the polymer backbone by bacteria was investigated.
Identifer | oai:union.ndltd.org:theses.fr/2015COMP2189 |
Date | 12 June 2015 |
Creators | Zhao, Yi |
Contributors | Compiègne, Haupt, Karsten, Falcimaigne-Cordin, Aude |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds