In this thesis, soft x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) studies of the electronic structure of selected organic molecules and liquids were carried out. The first part focuses on the used experimental techniques and the development of the instrumentation necessary for these studies, namely a soft x-ray spectrometer, and a temperature-controlled flow-through liquid cell. The former was optimized by a special analytical ray tracing method developed exclusively for this purpose. Due to its high transmission, the spectrometer facilitates a novel experimental approach of recording comprehensive 'RIXS maps', which are 2-dimensional plots of x-ray scattering intensities as a function of both, excitation and emission photon energy. The liquid cell extends these possibilities to the study of liquids, especially the interaction of molecules in liquids and their chemical reactions under well-controlled conditions. Organic molecules have attracted considerable attention in the last decade. The intense research activities related to these materials have two main motivations: on the one hand, organic molecules have a technological application as building blocks of organic semiconductors, while, on the other hand, organic molecules are the functional elements in biological systems. In order to cost-effectively produce optimized organic electronic devices, a fundamental knowledge of the electronic properties of the organic molecules interface is necessary. Therefore, many studies of the electronic structure of potential candidates for organic electronics exist. Two of these candidates, namely C60 and well-ordered multilayers PTCDA on a Ag(111) surface are investigated in this thesis. For the study of C60 molecules, a comprehensive 'RIXS map' was recorded and analyzed. The RIXS map taken in only 25 minutes allows a quantitative analysis of energy losses, yielding for example the HOMO-LUMO distance. It also identifies a core-excitonic state and facilitates a quantitative comparison of its binding energy with that of valence excitons in C60. Furthermore, decay channel-selective partial fluorescence yield XAS spectra can be extracted from the RIXS map, yielding information on the population of the core-excitonic state as a function of excitation energy. As a second model system of organic molecules relevant for organic electronics, PTCDA was chosen. The complex electronic structure of the occupied states of a highly ordered, flat-lying PTCDA multilayer on a Ag(111) surface was investigated by symmetry-resolved resonant x-ray emission spectroscopy. The rapidly occurring beam damage effects were characterized on the basis of irradiation-time dependent series of C and O x-ray emission spectra. Upon varying the excitation energy and emission geometry, atom- and symmetry-specific carbon K emission spectra with negligible beam damage effects were obtained that allow to distinguish between electronic states with sigma and pi symmetry. A density functional theory calculation of the PTCDA molecule reproduces the energy positions of the most prominent emission features remarkably well. In addition, the energy positions of the sigma and pi emissions agree well with the calculated energies of the respective orbitals. In order to shed light on the second aspect of organic molecules, namely their role in biological systems, first a detailed investigation of the electronic structure and proton dynamics of liquid water as the medium of most chemical and biochemical reactions was carried out. Therefore, a comprehensive oxygen K RIXS map of liquid water was recorded and analyzed in great detail. A temperature-dependent comparison with XAS and RIXS data of D2O, NaOH, and NaOD leads to the conclusion, that ultra-fast dissociation takes place in liquid water on the timescale of the oxygen 1s core hole lifetime, resulting in a characteristic spectral contribution in the RIXS spectra. The dissociation is promoted by intact hydrogen bonds with neighboring molecules. In consequence, the rate of dissociation directly depends on the initial hydrogen bond configuration. In the next step towards biologically relevant systems, the nitrogen K edges of the amino acids glycine and histidine were investigated in powderous form as well as in their native environment, namely in aqueous solution. X-ray absorption and emission spectra of the aqueous solutions were analyzed at pH-values of 6 and for glycine also at pH 12 and compared to the spectra of powders. A pH-value of 12 causes deprotonation of the amino group, leading to significant changes in the nitrogen spectra as compared to pH 6. The results from these four examples demonstrate that a wealth of novel information can be obtained by using the new experimental tools developed in this thesis, namely a highly sensitive x-ray spectrometer and a flow-through liquid cell. / Diese Arbeit beschäftigt sich mit der Untersuchung der elektronischen Struktur ausgewählter organischer Moleküle und Flüssigkeiten mittels Röntgenabsorptionsspektroskopie (XAS) und resonanter inelastischer Röntgenstreuung (RIXS). Der erste Teil beschreibt die verwendeten spektroskopischen Methoden und die Entwicklung der dafür notwendigen Geräte, insbesondere eines Röntgenspektrometers und einer temperierten Durchflussnasszelle. Ersteres wurde mittels einer eigens dafür entwickelten analytischen Raytracing-Methode optimiert. Aufgrund seiner hohen Transmission ermöglicht das Spektrometer einen für weiche Röntgenstrahlung neuartigen experimentellen Ansatz, nämlich die Aufnahme einer umfassenden RIXS-Karte. Das ist eine 2-dimensionale Auftragung der Röntgenstreuintensität als Funktion der Anregungs- und der Emissionsphotonenenergie. Die Nasszelle erweitert diese experimentellen Möglichkeiten auf die Untersuchung von Flüssigkeiten. Organische Moleküle haben im letzten Jahrzehnt erhebliche Aufmerksamkeit auf sich gezogen. Die intensiven Forschungsaktivitäten an diesen Materialen haben zwei Hauptmotivationen: einerseits haben organische Moleküle technologische Anwendung als organische Halbleiter, und andererseits sind organische Moleküle die funktionalen Einheiten in biologischen Systemen. Um optimierte organische Halbleiterbauelemente kostengünstig produzieren zu können, muss man über die elektronischen Eigenschaften der organischen Moleküle genauestens Bescheid wissen. Deshalb wurde bereits eine Vielzahl an Untersuchungen potentieller Kandidaten für organische Halbleiterbauelemente durchgeführt. Zwei dieser Kandidaten, nämlich C60 und wohlgeordnete Multilagen von PTCDA auf einer Ag(111)-Oberfläche werden in dieser Arbeit untersucht. Für die Untersuchung der C60 Moleküle wurde eine RIXS-Karte aufgenommen und analysiert, woraus sich direkt die HOMO-LUMO Distanz ergab. Außerdem lässt sich die Existenz eines rumpfexzitonischen Zustands beobachten, dessen Bindungsenergie man quantitativ mit der Valenzexzitonenbindungsenergie in C60 vergleichen kann. Überdies können aus der RIXS-Karte Zerfallskanal-selektive Fluoreszenzausbeute XAS Spektren extrahiert werden, die zum Beispiel Auskunft über die Besetzung des rumpfexzitonischen Zustands als Funktion der Anregungsenergie geben. Als zweites Modellsystem wurde PTCDA ausgewählt, das mittels symmetrieaufgelöster resonanter Röntgenemissionsspektroskopie untersucht wurde. Die dabei rasch einsetzenden Strahlenschäden wurden anhand von Bestrahlungsdauer-abhängigen Serien von Kohlenstoff- und Sauerstoffspektren charakterisiert. Durch Variation der Anregungsenergie und Emissionsgeometrie wurden atom- und symmetriespezifische Kohlenstoffspektren mit vernachlässigbarem Strahlenschaden gewonnen. Diese erlauben die Unterscheidung von elektronischen Zuständen mit sigma- und pi-Symmetrie. Eine Dichtefunktionaltheorie-Rechnung stimmt bemerkenswert gut mit den Energiepositionen der spektralen Signaturen überein. Darüberhinaus passen die spektralen sigma- und pi-Anteile zu den Symmetrien der berechneten Orbitale an den jeweiligen Energiepositionen. Um den zweiten Aspekt organischer Moleküle, nämlich ihre Rolle in biologischen Systemen zu beleuchten, war es zunächst notwendig, die elektronische Struktur und Protonendynamik von flüssigem Wasser zu studieren, das bekanntermaßen das Medium vieler chemischer und biochemischer Reaktionen darstellt. Zu diesem Zweck wurde eine vollständige RIXS-Karte der Sauerstoff K Kante aufgenommen und im Detail analysiert. Ein temperaturabhängiger Vergleich mit XAS and RIXS Daten von D2O, NaOH und NaOD erlaubt die Schlussfolgerung, dass ultra-schnelle Dissoziation auf der Zeitskala der Sauerstoff 1s Rumpflochlebensdauer in flüssigem Wasser stattfindet, die zu einer charakteristischen spektralen Signatur in den RIXS Spektren führt. Diese Dissoziation wird gefördert durch intakte Wasserstoffbrückenbindungen mit benachbarten Wassermolekülen. Damit hängt die Dissoziationsrate direkt von der Ausgangskonfiguration der Wasserstoffbrückenbindungen ab. Im nächsten Schritt in Richtung biologisch relevanter Systeme wurde die Stickstoffkante der Aminosäuren Glyzin und Histidin sowohl in Pulverform als auch in wässriger Lösung untersucht. Röntgenabsorptions- und -emissionsspektren der wässrigen Lösungen wurden bei pH-Werten von 6 und im Falle des Glyzins auch bei pH 12 analysiert und mit den Pulverspektren verglichen. Ein pH-Wert von 12 führt zur Deprotonierung der Aminogruppe, was zu signifikanten Änderungen in der spektralen Signatur der Stickstoffspektren führt. Die Ergebnisse dieser vier Beispiele demonstrieren, dass eine Vielfalt neuartiger Information gewonnen werden kann durch die Anwendung der neuen experimentellen Werkzeuge, die in dieser Arbeit entwickelt wurden, nämlich eines hochempfindlichen Röntgenspektrometers und einer Durchflussnasszelle.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3114 |
Date | January 2009 |
Creators | Fuchs, Oliver |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0036 seconds