La demande pour des systèmes RF plus compacts avec des bandes plus larges a poussé l'exploration de bandes toujours plus hautes en fréquence forçant un transfert des technologies existantes et l'invention de nouvelles pour ces bandes. Parmi les principaux obstacles rencontrés dans cet effort, se trouvent le problème du confinement de champ, les pertes diélectriques importantes, et les difficultés d'intégration entre deux systèmes conçus avec une technologie différente. Afin de pallier à ces problèmes, plusieurs nouvelles technologies sont apparues durant ces deux dernières décennies. Une des plus prometteuse est le guide d'onde intégré au substrat (ou SIW pour Substrate Integrated Waveguide). Sa caractéristique principale est la possibilité d'intégrer les guides d'onde dans un substrat, le plus souvent en intégrant des cylindres métalliques ou diélectriques densément disposés, dans un substrat dont les faces, inférieure et supérieure, sont hautement conductrices. Cette technologie offre une liberté sans précédent à la gamme de systèmes pouvant être réalisés. La richesse de possibilités de designs, la robustesse et la solidité des performances ont conduit à un nombre très larges de systèmes SIW, certains d'entre eux trouvant place dans des applications commerciales. L'inconvénient de cette technologie provient du très grand nombre d'élément nécessaire et de la complexité de son agencement. Par conséquent, ils présentent un défi du point de vue d'un concepteur, nécessitant des analyses numériques et des optimisations. Les solveurs les plus couramment utilisés à cette fin sont basés sur la FÉM, la FDTD / FDFD et MoM, ou sur une fusion de plusieurs méthodes. Bien qu'ils soient à la hauteur pour une vaste gamme de structures, les plus rapides et plus précis sont très recherchés. Cette thèse porte sur une méthode numérique hybride adaptée à l'analyse d'une vaste gamme de structures SIW planaires. Elle repose sur une représentation efficace des champs dans des guides d'ondes à parois parallèles, chargés avec des diélectriques planaires simples ou multicouches contenant des cylindres ; elle permet la construction de systèmes linéaires dont les solutions donnent les amplitudes de champ post-dispersion. Ce problème est ce que nous appelons le mode-matching, et fournit des moyens de calcul rapide de champ en présence de cylindres métalliques et diélectriques. Étant donné qu'une part importante de ces dispositifs utilise des fentes rectangulaires étroites comme éléments de couplage et de rayonnement, nous proposons une approche basée sur les MoM pour leur analyse. Grâce à l'application du principe d'équivalence, chaque fente remplacée par des courants magnétiques équivalents; la procédure divise efficacement le problème le plus large en plusieurs plus petits, chacun appartenant à une région délimitée par des plaques PEC parallèles (un seul guide d'ondes à plans parallèles). En exerçant les conditions aux limites sur les surfaces des fentes et en effectuant la pondération Galerkin, on obtient un système linéaire dont les solutions sont les amplitudes des courants magnétiques. De là, nous procédons au calcul des quantités pertinentes telles que les paramètres S, Y et Z. Nous fournissons des critères empiriques pour choisir le nombre de modes / fonctions de base suffisantes pour une grande précision. En outre, nous présentons des techniques d'approximation et montrons comment exploiter les symétries inhérentes à des dispositifs SIW afin d'accélérer encore plus la méthode. Nous présentons les résultats de l'analyse de plusieurs structures SIW, obtenus par notre code en interne sur la base de la méthode exposée ici, et les comparons à ceux obtenus avec un solveur commercial standard. Les résultats obtenus montrent une excellente précision et efficacité de la méthode proposée. Le facteur d'accélération, la robustesse et la généralité en font un outil attrayant pour être utilisé dans la conception et l'optimisation des dispositifs SIW. / With constant demand for larger band and more compact RF devices, the rapid shift to higher frequency regions, as high as the W-band (75 to 110 GHz), forces microwave designers to both transfer existing technologies to and invent new ones for these bands. The major obstacles encountered in this endeavour are the problem of efficient field confinement, problematic electrical contacts, high dielectric losses, and difficult integration between devices realized with different technologies, to name a few. To overcome these issues, several competing technologies emerged in the past two decades. One of the most promising is the substrate-integrated waveguide (SIW) paradigm. Its key feature is the possibility of integrating waveguides into substrates, most often done by embedding densely-packed metal and dielectric cylinders into substrates bounded by highly-conductive layers, e.g. PCB-type ones. This provides unprecedented freedom in the range of devices that can be realized. Though commonly planar, these devices may have sidewalls of almost arbitrary shape and can be easily integrated with ones realized in alternative technologies, such as the coplanar-waveguide or microstrip technology. The richness in design possibilities, robustness and solid performance has led to a very large number of SIW devices, some of them finding place in commercial applications. Unfortunately, they often comprise a large number of elements and have complex layouts. Hence, they present a challenge from a designer’s perspective, necessitating numerical analysis and optimization. The most common solvers used for that purpose are based on FEM, FDTD/FDFD, and MoM, or merge several methods. Though they are up to the task for a vast range of structures, faster and more accurate ones are highly sought for. This thesis is concerned with a hybrid numerical method suited to the analysis of a vast range of planar SIW structures. It relies on an efficient representation of fields in parallel-plate waveguides, loaded with either single or multi-layer planar dielectrics, containing circular cylindrical posts; it enables the construction of linear systems whose solutions yield post-scattered field amplitudes. This problem is what we refer to as mode-matching, and provides means of fast computation of field in presence of metal and dielectric posts. Since a significant share of such devices use narrow rectangular slots as coupling and radiating elements, we propose an MoM-based approach to their analysis. Through the application of the equivalence principle, each slot replaced by equivalent magnetic currents; the procedure effectively partitions the larger problem into several smaller ones, each pertaining to a region bounded by parallel PEC plates (a single parallel-plate waveguide). Enforcing the boundary conditions at surfaces of slots and performing Galerkin weighting, we obtain a linear system whose solutions are the amplitudes of magnetic currents. From there we proceed to the computation of relevant quantities such as S, Y and Z parameters. We provide empirical criteria for choosing the number of modes/basis functions sufficient for high accuracy. Moreover, we present approximation techniques and show how to exploit symmetries inherent in SIW devices to speed up the method even further. To stress the features rendering our approach advantageous over the alternatives,we compare it to ones found in literature representing what we believe to be the most successful attempts. We present the results of analysis of several SIW structures of varying complexity, obtained by our in-house code based on the method exposed here, and compare them against the ones obtained with a standard commercial solver. The obtained results show excellent accuracy and efficiency of the proposed method. The speed-up factor, the robustness and generality make it an attractive tool to be used in design and optimization of SIW devices.
Identifer | oai:union.ndltd.org:theses.fr/2016REN1S071 |
Date | 24 October 2016 |
Creators | Seljan, Josip |
Contributors | Rennes 1, Sauleau, Ronan, Ettorre, Mauro |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds