Return to search

Wireless Sensor Network for Controlling the Varroasis Spread within Bee colonies across a Geographical Region

Background: With the global decline of honey bee populations, safeguarding these vital pollinators has become crucial. Varroa destructor mites are a primary threat, weakening bees and facilitating the spread of diseases, which can decimate colonies and disrupt ecosystems. This thesis investigates the application of a Wireless sensor network (WSN) for the monitoring and control of varroasis spread within bee colonies across large geographical areas. Objectives: The main objective of this research is to develop an integrated method that combines biological insights into varroasis with WSN functionalities for real-time disease monitoring and control. By doing so, the study aims to contribute to the development of a scalable and sustainable approach to apiculture and disease management. Methods: A multi-phase methodological approach was employed, encompassing the modelling of biological phenomena, formulation of WSN functionalities, and the design of a scalable WSN architecture. Simulation studies were conducted, followed by the development of a theoretical framework to support the practical application of the proposed WSN system. A key aspect of the methodology is the introduction of energy estimation models to evaluate the operational feasibility of the WSN. Results: The results indicate that the WSN is capable of dynamically adjusting its monitoring rate in response to changes in infection dynamics, effectively identifying and managing varroa mite populations. The system demonstrated adaptability to various infection rates, with the potential to improve the timely and targeted treatment of infested colonies. Energy consumption data further affirms the operational viability of the WSN. Conclusions: The study concludes that integrating WSNs with biological models is a viable solution for the real-time monitoring and management of varroasis. The proposed WSN system holds promise for enhancing the health and productivity of bee colonies on a broad scale, offering a novel contribution to the fields of apiculture and environmental monitoring.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-26009
Date January 2024
CreatorsDasyam, Venkat Sai Akhil, Pokuri, Saketh
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds