La première partie de ce mémoire présente une nouvelle vision de l'estimation de mouvement, et donc de la compression, dans les séquences<br />vidéo. D'une part, nous avons choisi d'aborder l'estimation de mouvement à partir de familles d'ondelettes redondantes adaptées à différentes<br />transformations, dont, plus particulièrement, la vitesse. Ces familles, très peu connues, ont déjà été étudiées dans le cadre de la poursuite de<br />cibles. D'autre part, les standards de compression actuels comme MPEG4 prennent en compte une compression objet mais ne calculent toujours que de<br />simples vecteurs de mouvements de ``blocs''. Il nous a paru intéressant de chercher à mettre en oeuvre ces familles d'ondelettes car 1)<br />elle sont construites pour le calcul de paramètres sur plusieurs types de mouvement (rotation, vitesse, accélération) et 2) nous<br />pensons qu'une approche de l'estimation basée sur l'identification de trajectoires d'objets dans une scène est une solution intéressante pour les<br />méthodes futures de compression. En effet nous pensons que l'analyse et la compréhension des mouvements dans une scène est une voie pour des méthodes<br />de compression ``contextuelles'' performantes.<br /><br /><br /><br />La seconde partie présente deux développements concernant la segmentation non-supervisée dans une approche bayésienne. Le premier, destiné à réduire<br />les temps de calcul dans la segmentation de séquences vidéo, est basé sur une mise en oeuvre itérative, simple, de la segmentation. Il nous a aussi<br />permis de mettre une estimation de mouvement basée sur une segmentation ``région'' (voire objet). Le second est destiné à diminuer les temps de<br />segmentation d'images fixes en réalisant la segmentation dans le domaine des ondelettes. Ces deux développements sont basés sur une approche par<br />estimation bayésienne utilisant un modèle de champ aléatoire de Potts-Markov (PMRF) pour les étiquettes des pixels, dans le domaine direct, et pour<br />les coefficients d'ondelettes. Il utilise aussi un algorithme itératif de type MCMC (Markov Chain Monte Carlo) avec échantillonneur de Gibbs.<br />L'approche initiale, directe, utilise un modèle de Potts avec voisinage d'ordre un. Nous avons développé le modèle de Potts pour l'adapter à des<br />voisinages convenant aux orientations privilégiées des sous-bandes d'ondelettes. Ces réalisations apportent, à notre connaissance, des approches<br />nouvelles dans les méthodes de segmentation<br />non-supervisées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011310 |
Date | 29 November 2005 |
Creators | Brault, Patrice |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds