The vicinity of continuous quantum phase transitions displays unique properties such as scaling behavior and incoherent excitation spectra which are not found in any stable phase of matter. This fascinating quantum critical regime is crucial for progress on key problems of modern condensed matter physics. The three research projects of this thesis challenge and refine our understanding of quantum criticality in different ways.
Part I concerns unexpected quantum critical behavior near the Mott transition. The bandwidth-controlled Mott transition in the half-filled one-band Hubbard model is one of the most paradigmatic phenomena of strongly correlated physics. Within the approximation of dynamical mean-field theory (DMFT) this metal-insulator transition is of first order at low temperatures, with the transition line ending at a critical temperature. Surprisingly, numerical calculations with DMFT and experiments in organic salts consistently found quantum critical scaling of the resistivity above the critical temperature. The aim of this project is to explain this unexpected scaling in the absence of a quantum critical point in the phase diagram. To this end, we perform extensive DMFT simulations with the numerical renormalization group as a state-of-the-art impurity solver. We find that the quantum critical scaling can be traced back to the metastable insulator at the boundary of the coexistence region at T = 0 which exhibits previously unknown scale-invariance on the frequency axis.
In Part II we study how magnetic quantum criticality is affected by the coupling to additional non-critical degrees of freedom. Considering typical electronic energy scales the study of quantum critical phenomena in magnets requires very low temperatures in the sub-100mK range. In this regime additional effects which are typically neglected in the theoretical modeling may become important. Here we focus on one particular example, which is the hyperfine coupling to nuclear spins. We investigate the fate of the quantum critical behavior at lowest temperatures and determine crossover scales below which a purely electronic description is no longer sufficient. Explicit calculations for paradigmatic models on the level of mean-field theory plus Gaussian fluctuations reveal that the quantum phase transition can be shifted or smeared in the presence of nuclear spins. More exotic effects of nuclear spins, e.g. in spin liquids, are discussed on a qualitative level.
Part III is devoted to the discussion of domain-driven phase transitions in easy-axis ferromagnets.This work is motivated by an experimental study of LiHoF4, a dipolar easy-axis ferromagnet that displays a well-studied quantum phase transition from a ferromagnetic to a paramagnetic phase as function of a transverse field. Measurements of the ac susceptibility found a well-defined phase transition even in tilted fields where the Ising symmetry is explicitly broken and Landau theory of the microscopic order parameter predicts a crossover. We are able to explain and model the transition in tilted fields by the inclusion of domain effects, i.e., by taking into account the spontaneous breaking of translational symmetry by mesoscale pattern formation in the ferromagnetic phase. The modeling of stray-field energies as effective antiferromagnetic couplings between magnetization components in different domains is in excellent quantitative agreement with the experimental results.:1 Phases and their transitions . . . . . . . . . . . . . . . . . . . . 4
1.1 Thermal and quantum phase transitions . . . . . . . . . . . . . . . . . . . . 4
1.2 Theoretical description of phase transitions . . . . . . . . . . . . . . . . . . 8
1.3 Project overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
I Mott quantum criticality in the one-band Hubbard model . . . . . . . . . . .15
2 Introduction to the Mott transition . . . . . . . . . . . . . . . . . . . . 16
2.1 Metal-insulator transitions and the Hubbard model . . . . . . . . . . . . . . 16
2.2 A local perspective: the idea of dynamical mean-field theory . . . . . . . . . 19
2.3 Quantum critical scaling near the Mott transition . . . . . . . . . . . . . . . 21
3 Dynamical mean-field theory (DMFT) . . . . . . . . . . . . . . . . . . . . 25
3.1 Single-impurity Anderson model . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Theoretical foundations of DMFT . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Wilson's numerical renormalization group . . . . . . . . . . . . . . . . . . . 32
3.4 Implementation and choice of parameters . . . . . . . . . . . . . . . . . . . 36
4 Power-law spectra and quantum critical scaling . . . . . . . . . . . . . . . . . . 38
4.1 Scale-invariant solutions of DMFT . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Spectral power laws at T=0 in the metastable insulator . . . . . . . . . . . 40
4.3 Finite-temperature crossovers in the spectral function . . . . . . . . . . . . 47
4.4 Resistivity scaling driven by spectral power laws . . . . . . . . . . . . . . . 50
4.5 Scaling analysis of the dynamic susceptibility . . . . . . . . . . . . . . . . . 58
4.6 Ideas and obstacles towards an analytical understanding . . . . . . . . . . . 62
4.7 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
II Limits on magnetic quantum criticality from nuclear spins . . . . . . . . . . . . .65
5 Stability of magnetic transitions to hyperfine coupling . . . . . . . . . . . . . . . .66
5.1 Nuclear spins near quantum criticality . . . . . . . . . . . . . . . . . . . . . 66
5.2 Introduction to nuclear spins and hyperfine coupling . . . . . . . . . . . . . 67
5.3 Magnetic phases in the presence of nuclear spins . . . . . . . . . . . . . . . 69
5.4 Two scenarios for magnetic quantum criticality plus nuclear spins . . . . . . 70
6 Paradigmatic models for magnetic quantum phase transitions . . . . . . . . . 73
6.1 Transverse-field Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Coupled-dimer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Frustrated spin models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7 Crossover scales introduced by nuclear spins . . . . . . . . . . . . . . . . . . .83
7.1 Shifted transitions: transverse-field Ising magnets . . . . . . . . . . . . . . . 83
7.2 Smeared transitions: coupled-dimer magnets . . . . . . . . . . . . . . . . . . 90
7.3 Additional transitions due to nuclear spins . . . . . . . . . . . . . . . . . . . 98
7.4 Exotic magnetic quantum phase transitions plus nuclear spins . . . . . . . . 101
7.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
III Domain-driven phase transitions in easy-axis ferromagnets . . . . . . . . 105
8 Easy-axis ferromagnet LiHoF4 . . . . . . . . . . . . . . . . . . . . 106
8.1 Easy-axis ferromagnets in tilted fields . . . . . . . . . . . . . . . . . . . . . 106
8.2 LiHoF4 and its phase transitions . . . . . . . . . . . . . . . . . . . . . . . . 109
9 Modeling of microscopic degrees of freedom in LiHoF4 . . . . . . . . . . . . 112
9.1 Landau theory in tilted fields . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2 Crystal field effects and microscopic Hamiltonian . . . . . . . . . . . . . . . 113
9.3 Crossovers in the microscopic model . . . . . . . . . . . . . . . . . . . . . . 118
10 Modeling of mesoscopic degrees of freedom in LiHoF4 . . . . . . . . . . . . . . .123
10.1 Domains in ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.2 Modeling of domain effects as effective interactions . . . . . . . . . . . . . . 127
10.3 Combined mean-field Hamiltonian and domain optimization . . . . . . . . . 130
10.4 Nature of the phase transition in tilted fields . . . . . . . . . . . . . . . . . 132
10.5 Domain-driven phase transition at T = 0 . . . . . . . . . . . . . . . . . . . . 135
10.6 Domain-driven phase transition at finite temperatures . . . . . . . . . . . . 141
10.7 Comparison with experimental results . . . . . . . . . . . . . . . . . . . . . 146
10.8 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
IV Summary & Outlook . . . . . . . . . . . . . . . . . . . . 151
V Appendices . . . . . . . . . . . . . . . . . . . . 155
A Part I: NRG level spectra . . . . . . . . . . . . . . . . . . . . 156
B Part I: Analytical properties of scale-invariant DMFT solutions . . . . . . . . . . .159
B.1 Kondo perturbation theory as an impurity solver . . . . . . . . . . . . . . . 159
B.2 Analytical properties of a power-law self-energy . . . . . . . . . . . . . . . . 166
C Part I: Scaling analysis of the resistivity . . . . . . . . . . . . . . . . . . 168
D Part II: Solution of the transverse-field Ising model with nuclear spins . . . . . . 172
D.1 Holstein-Primakoff representation of the electronic and nuclear spins . . . . 172
D.2 Determination of the classical reference state . . . . . . . . . . . . . . . . . 174
D.3 Excitation spectrum of the coupled nuclear-electronic model . . . . . . . . . 175
D.4 Magnetization, susceptibility, and heat capacity . . . . . . . . . . . . . . . . 177
E Part II: Solution of the coupled-dimer model with nuclear spins . . . . . . . . . . . 181
E.1 Bond-operator description of the electronic spins . . . . . . . . . . . . . . . 181
E.2 Determination to the electronic ground state . . . . . . . . . . . . . . . . . 185
E.3 Holstein-Primakoff representation of the nuclear spins . . . . . . . . . . . . 188
E.4 Excitation spectrum of the coupled nuclear-electronic model . . . . . . . . . 189
E.5 Staggered magnetization and susceptibility . . . . . . . . . . . . . . . . . . 192
F Part III: Calculation of domain-induced effective interactions . . . . . . . . . . . . . 198
Bibliography . . . . . . . . . . . . . . . . . . . . 203
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:75405 |
Date | 08 July 2021 |
Creators | Eisenlohr, Heike |
Contributors | Vojta, Matthias, Rosenow, Bernd, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds