Return to search

Calcul rapide de forces et de déformations mécaniques non-linéaires et visco-élastiques pour la simulation de chirurgie

Ce travail présente une méthode de calcul rapide de déformations et de forces mécaniques destinée à la simulation d'applications chirurgicales. La simulation de chirurgie vise à offrir aux praticiens des outils leur permettant de pratiquer des entraînements intensifs et de pouvoir planifier avec précision certaines interventions. La conception de tels simulateurs nécessite de disposer de modèles géométriques et mécaniques précis des organes du corps humain, et d'algorithmes de calcul suffisamment rapides pour être capable d'utiliser ces modèles dans des conditions de temps réel. La plupart des simulateurs existants utilisent des modèles mécaniques extrêmement simples, basés sur les lois de l'élasticité linéaire. Or de nombreux résultats de biomécanique indiquent que les tissus biologiques se comportent selon des lois beaucoup plus complexes, incluant des effets non-linéaires et visco-élastiques importants. Pour cette raison, nous avons développé une méthode permettant le calcul rapide de déformations et de forces incluant des effets mécaniques non-linéaires et visco-élastiques. Cette méthode utilise la théorie des éléments finis et a été conçue comme une extension de l'algorithme dit des masses-tenseurs pour l'élasticité linéaire. Son principe consiste à pré-calculer un certain nombre de tenseurs dépendant des caractéristiques géométriques et mécaniques de chaque élément fini, qui sont ensuite combinés dans la phase de simulation proprement dite. Notre modèle non-linéaire ne présage d'aucune forme particulière de loi mécanique, de sorte que la méthode proposée est suffisamment générique pour s'appliquer à une grande variété de comportements et d'objets. Après la description de l'algorithme, de ses performances en terme de temps de calcul et de ses conditions de stabilité numérique, nous démontrons que cette méthode est capable de reproduire avec précision le comportement mécanique d'un tissu biologique mou. Ce travail s'inscrivant plus spécifiquement dans le cadre du développement d'un système de simulation de la cryochirurgie du foie, nous avons étudié expérimentalement les propriétés du foie lors de sa perforation par une aiguille à biopsie. Le modèle de masses-tenseurs non-linéaire et visco-élastique construit à l'aide des paramètres expérimentaux a pu reproduire avec une bonne précision les propriétés observées. / This work presents a method for the fast computation of mechanical deformations and forces for the simulation of surgical applications. Surgery simulation aims at providing physicians with tools allowing extensive training and precise planning of given interventions. The design of such simulation systems requires accurate geometrical and mechanical models of the organs of the human body, as well as fast computation algorithms suitable for real-time conditions. Most existing simulation systems use very simple mechanical models, based on the laws of linear elasticity. Numerous biomechanical results yet indicate that biological tissues exhibit much more complex behaviour, including important non-linear and visco-elastic effects. For this reason, we developed a method allowing the fast computation of mechanical deformations and forces including non-linear and visco-elastic effects. This method uses finite element theory and has been constructed as an extension of the so-called tensor-mass algorithm for linear elasticity. It consists in pre-computing a set of tensors depending on the geometrical and mechanical properties of each finite element, which are later combined in the simulation part itself. Our non-linear model does not assume any particular form of mechanical law, so that the proposed method is generic enough to be applied to a wide variety of behaviours and objects. Following the description of the algorithm, of its performances in terms of computation time, and of its numerical stability conditions, we show that this method allows to reproduce the mechanical behaviour of a biological soft tissue with good precision. As this project is part of a broader effort aiming more specifically at developing a simulation system for liver cryosurgery, we experimentally characterized the properties of liver in perforation by a biopsy needle. The non-linear and visco-elastic tensor-mass model constructed from experimental parameters succeeded in accurately reproducing the observed properties.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/17855
Date11 April 2018
CreatorsSchwartz, Jean-Marc
ContributorsLaurendeau, Denis
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Formatapplication/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds