Cette thèse porte sur l'application de techniques de contrôle optimal et de contrôle géométriques au problème de transfert d'orbite de satellite et à la géométrie presque-riemannienne. Dans ces cas, le principe du maximum de Pontryagin permet d'étudier le flot extrémal pour des systèmes de contrôle affines.Dans le cas d'un satellite à faible poussée, la technique de moyennation permet d'approcher les trajectoires du système réel. La moyennation est explicite dans le cas de la minimisation de l'énergie et fait apparaître dans certains cas des problèmes presque-riemanniens. L'étude géométrique de tels problèmes est généralisée par l'étude de métriques sur la deux-sphère de révolution. On peut ainsi classifier les situations selon la transcendance des solutions et discuter l'optimalité selon la nature des lieux de coupure et de conjugaison.L'étude du problème moyenné du transfert orbital et de situations génériques sur la sphère de révolution est motivée par l'approche homotopique de résolution numérique du problème de transfert pour d'autres fonctions de coût. La méthode de continuation couplée à celle de tir simple est utilisée pour résoudre un problème de transfert à forte poussée à consommation minimale de carburant.Les outils géométriques sont aussi utilisés afin d'étudier la situation locale dans un voisinage des points de tangence en géométrie presque-riemannienne en dimension deux. On calcule pour les approximations nilpotente et d'ordre zéro le front d'onde, les sphères de petits rayons et les lieux de coupure et de conjugaison.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00633197 |
Date | 29 November 2010 |
Creators | Janin, Gabriel |
Publisher | Université de Bourgogne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds