Les antibiotiques représentent à l’heure actuelle le seul moyen de lutte efficace contre la tuberculose. Parmi eux, l’éthionamide (ETH) est l’un des antituberculeux les plus efficaces. Il pose cependant des problèmes d’effets indésirables non négligeables ce qui relègue son utilisation en seconde ligne de traitement. Ces inconvénients aboutissent fréquemment à une inobservance au traitement, à l’origine du développement de souches résistantes.L’ETH, à l’instar d’autres composés antimycobactériens, est une pro-drogue nécessitant son activation métabolique par une enzyme produite par la mycobactérie elle-même. Il a été montré que cette bio-activation intra-bactérienne est exercée par la mono-oxygénase EthA dont la production est réprimée par le régulateur transcriptionnel EthR. Lors de travaux précédents, des inhibiteurs de EthR ont été développés dans le but de stimuler la bioactivation de l’ETH par EthA. Ces molécules de synthèse ont permis de potentialiser l’efficacité de l’ETH d’un facteur trois sur un modèle murin d’infection tuberculeuse. Toutefois, bien qu’actifs chez l’animal, cette première série de composés possède des propriétés pharmacocinétiques et pharmacodynamiques (PK/PD) insuffisantes pour une utilisation en clinique humaine. Le premier objectif de ce travail a donc été de définir un « profil minimum acceptable » nécessaire à la réalisation d’études pré-cliniques. L’évaluation systématique des performances de plus de 500 composés a mené à l’identification de leads compatibles avec le profil défini. Notre deuxième objectif a été d’évaluer l’intérêt de la stratégie de potentialisation de l’ETH dans la problématique de la prise en charge de la tuberculose multi-résistante (MDR-TB). Ainsi, dans 80% des cas, l’usage de nos inhibiteurs d’EthR a permis d’abaisser significativement la concentration minimale inhibitrice d’ETH.Parallèlement, tirant profit de la quantité importante de composés générés lors de ce programme d’optimisation, une étude fondamentale des interactions entre inhibiteurs et EthR a été menée. De cette manière, nous avons pu identifier une région restreinte de la poche d’interaction de EthR avec ses inhibiteurs/ligands, nécessaire et suffisante à la réorganisation spatiale menant à une forme inactive du répresseur. Pour la première fois dans cette famille de répresseur de type TetR, nous avons montré que la modification d’un seul acide aminé dans cette région de la protéine provoque les mêmes phénomènes allostériques que ceux induits par la fixation des inhibiteurs/ligands. De façon inattendue, le programme d’optimisation des inhibiteurs nous a mené à l’identification d’une nouvelle famille de molécules capables de potentialiser l’ETH alors qu’elles ont perdu leur capacité d’interagir avec EthR. Des expériences de transcriptomique et de RMN ont révélé que ces composés inhibent une voie de bio-activation de l’ETH indépendante de EthA. Cette voie ouvre des perspectives extraordinaires de traitement puisque ces inhibiteurs augmentent significativement l’efficacité de la prodrogue, non seulement sur les souches cliniques MDR-TB, mais également sur les souches cliniques résistantes à l’ETH. Notre dernier objectif a été de calquer cette stratégie de potentialisation à l’antituberculeux le plus utilisé dans le monde, l’isoniazide (INH). Tout comme l’ETH, l’INH est une pro-drogue. Sa bio-activation est tributaire de la catalase-peroxydase KatG dont le niveau d’expression est sous dépendance du régulateur transcriptionnel FurA. Notre objectif a donc été d’obtenir des inhibiteurs spécifiques de FurA. En l’absence de structure cristallographique de FurA nous empêchant une approche par chimie raisonnée sur cible, nous avons basé notre stratégie sur un criblage à haut débit de vastes chimiothèques. Les premiers hits et leur partielle optimisation sont discutés dans ce travail. / Antibiotics are currently the only effective means of control against tuberculosis. Among them, ethionamide (ETH) is one of the most effective. However it is responsible for significant side effects that relegate the ETH use to a second-line. These events often lead to non-compliance with treatment promoting many cases of multidrug resistant-tuberculosis (MDR-TB). Like other antimycobacterial compounds, ETH is a prodrug that requires bioactivation by an enzyme produced by the mycobacteria. It has been shown that the intrabacterial bioactivation of the prodrug by the monooxygenase EthA is controled by the mycobacterial repressor EthR. In previous studies, our group has developped EthR inhibitors shown to stimulate the bioactivation of ETH by EthA. These synthetic compounds led to boost the ETH efficacy three-fold in a M. tuberculosis-infected mice model. However, although active in animals, these compounds possess insufficient pharmacokinetic and pharmacodynamic (PK/PD) properties for envisaging human clinical evaluation. The first objective of this work was therefore to define a “minimum acceptable profile” required for initiating pre-clinical studies. Systematic evaluation of the performance of more than 500 compounds led to the identification of leads compatible with the defined profile. Our second objective was to evaluate the benefit of the ETH boosting strategy in the management of MDR-TB. In 80% of cases, the use of our EthR inhibitors drastically decreased the minimum inhibitory concentration of ETH.In parallel, we conducted a fundamental study on the interactions between inhibitors and EthR by exploiting the large amount of compounds generated during the optimization blueprint. This way, we have identified a narrow region of the binding pocket of EthR that interacts in all cases with its inhibitors/ligands. For the first time in this TetR family of repressors, we have shown that this portion of the ligand-binding site is necessary and sufficient for the structural reorganization of the repressor. As such, the modification of a single amino acid in this region of the protein caused the same allosteric phenomena as those induced by inhibitors/ligands, which led to the inactive form of EthR.Unexpectedly, the optimization blueprint of EthR inhibitors led to the identification of a new family of compounds able to boost ETH in spite of their loss of interaction with EthR. Transcriptomics and NMR experiments showed that these compounds inhibit the ETH bioactivation independently of EthA. This novel pathway opens up extraordinary opportunities for TB treatment since these compounds significantly increase the effectiveness of ETH, not only against clinical MDR-TB strains, but also against clinical isolates resistant to ETH.The last objective was to transpose this boosting strategy to isoniazid (INH), the most commonly used antituberculosis drug. As ETH, INH is a prodrug. Its bioactivation depends on the catalase-peroxidase KatG whose level of expression is controlled by the transcriptional regulator FurA. Our objective was therefore to obtain specific FurA inhibitors. Due to the absence of crystallographic structure of FurA, which preclude a target based approach, our strategy was based on high-throughput screening of large chemical libraries. The first hits and their partial optimization are discussed in this work.
Identifer | oai:union.ndltd.org:theses.fr/2012LIL2S049 |
Date | 17 December 2012 |
Creators | Blondiaux, Nicolas |
Contributors | Lille 2, Baulard, Alain Robert Marie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0032 seconds