Dans cette thèse, on a surtout étudié le caractère bien posé pour des équations aux dérivées partielles et des problèmes de contrôle optimal. On a étudié les problèmes de Cauchy associés à des lois de conservation hyperboliques avec des vitesses non locales, pour un modèle 1D (système de fabrication industrielle), puis 2D (processus de sélection folliculaire). Dans les deux cas, on montre l'existence et l'unicité de solutions des problèmes de Cauchy, en utilisant le théorème du point fixe de Banach. On a étudié par la suite des problèmes de contrôle optimal, d'abord sur le modèle 2D, puis sur un modèle basé sur des équations differentielles ordinaires (amplification de protéines mal repliées). Dans le premier modèle, on montre que les contrôles optimaux sont bang-bang avec un seul instant de commutation. Dans le second modèle, les contrôles optimaux sont relaxés, nous déterminons leur positionnement dans l'espace des contrôles admissibles.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00847756 |
Date | 05 July 2012 |
Creators | Shang, Peipei |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds