Return to search

Providing Support for the Movidius Myriad1 Platform in the SkePU Skeleton Programming Framework

The Movidius Myriad1 Platform is a multicore embedded platform primed to offer high performance and power efficiency for computer vision applications in mobile devices. The challenges of programming multicore environments are well known and skeleton programming offers a high-level programming alternative for parallel computing, intended to hide the complexities of the system from the programmer. The SkePU Skeleton Programming Framework includes backend implementations for CPU and GPU systems and it has the capacity to support more platforms by extending its backend implementations. With this master thesis project we aim to extend the SkePU Skeleton Programming Framework to provide support for execution in the Movidius Myriad1 embedded platform. Our SkePU backend for Myriad1 consists on a set of macros and functions to compose the different elements of a Myriad1 application, data communication structures to exchange data between the host systems and Myriad1, and a helper script and auxiliary files to generate a Myriad1 application.Evaluation and testing demonstrate that our backend is usable, however further optimizations are needed to obtain good performance that would make it practical to use in real life applications, particularly when it comes to data communication. As part of this project, we have outlined some improvements that could be applied to obtain better performance overall in the future, addressing the issues found with the methods of data communication.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-111844
Date January 2014
CreatorsCuello, Rosandra
PublisherLinköpings universitet, Institutionen för datavetenskap, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds