Return to search

Deep Learning based Classification of FDG-PET Data for Alzheimer's Disease

abstract: Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been studied. This serves as motivation to correctly classify the various diagnostic categories using FDG-PET data. Deep learning has recently been applied to the analysis of structural and functional brain imaging data. This thesis is an introduction to a deep learning based classification technique using neural networks with dimensionality reduction techniques to classify the different stages of AD based on FDG-PET image analysis.

This thesis develops a classification method to investigate the performance of FDG-PET as an effective biomarker for Alzheimer's clinical group classification. This involves dimensionality reduction using Probabilistic Principal Component Analysis on max-pooled data and mean-pooled data, followed by a Multilayer Feed Forward Neural Network which performs binary classification. Max pooled features result into better classification performance compared to results on mean pooled features. Additionally, experiments are done to investigate if the addition of important demographic features such as Functional Activities Questionnaire(FAQ), gene information helps improve performance. Classification results indicate that our designed classifiers achieve competitive results, and better with the additional of demographic features. / Dissertation/Thesis / Masters Thesis Computer Science 2017

Identiferoai:union.ndltd.org:asu.edu/item:44112
Date January 2017
ContributorsSingh, Shibani (Author), Wang, Yalin (Advisor), Li, Baoxin (Committee member), Liang, Jianming (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format61 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.1522 seconds