Return to search

Analyse mustirésolution de données de classements / Multiresolution analysis of ranking data

Cette thèse introduit un cadre d’analyse multirésolution pour les données de classements. Initiée au 18e siècle dans le contexte d’élections, l’analyse des données de classements a attiré un intérêt majeur dans de nombreux domaines de la littérature scientifique : psychométrie, statistiques, économie, recherche opérationnelle, apprentissage automatique ou choix social computationel entre autres. Elle a de plus été revitalisée par des applications modernes comme les systèmes de recommandation, où le but est d’inférer les préférences des utilisateurs pour leur proposer les meilleures suggestions personnalisées. Dans ces contextes, les utilisateurs expriment leurs préférences seulement sur des petits sous-ensembles d’objets variant au sein d’un large catalogue. L’analyse de tels classements incomplets pose cependant un défi important, tant du point de vue statistique que computationnel, poussant les acteurs industriels à utiliser des méthodes qui n’exploitent qu’une partie de l’information disponible. Cette thèse introduit une nouvelle représentation pour les données, qui surmonte par construction ce double défi. Bien qu’elle repose sur des résultats de combinatoire et de topologie algébrique, ses nombreuses analogies avec l’analyse multirésolution en font un cadre naturel et efficace pour l’analyse des classements incomplets. Ne faisant aucune hypothèse sur les données, elle mène déjà à des estimateurs au-delà de l’état-de-l’art pour des petits catalogues d’objets et peut être combinée avec de nombreuses procédures de régularisation pour des larges catalogues. Pour toutes ces raisons, nous croyons que cette représentation multirésolution ouvre la voie à de nombreux développements et applications futurs. / This thesis introduces a multiresolution analysis framework for ranking data. Initiated in the 18th century in the context of elections, the analysis of ranking data has attracted a major interest in many fields of the scientific literature : psychometry, statistics, economics, operations research, machine learning or computational social choice among others. It has been even more revitalized by modern applications such as recommender systems, where the goal is to infer users preferences in order to make them the best personalized suggestions. In these settings, users express their preferences only on small and varying subsets of a large catalog of items. The analysis of such incomplete rankings poses however both a great statistical and computational challenge, leading industrial actors to use methods that only exploit a fraction of available information. This thesis introduces a new representation for the data, which by construction overcomes the two aforementioned challenges. Though it relies on results from combinatorics and algebraic topology, it shares several analogies with multiresolution analysis, offering a natural and efficient framework for the analysis of incomplete rankings. As it does not involve any assumption on the data, it already leads to overperforming estimators in small-scale settings and can be combined with many regularization procedures for large-scale settings. For all those reasons, we believe that this multiresolution representation paves the way for a wide range of future developments and applications

Identiferoai:union.ndltd.org:theses.fr/2016ENST0036
Date14 June 2016
CreatorsSibony, Eric
ContributorsParis, ENST, Clémençon, Stéphan, Jakubowicz, Jérémie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds