Return to search

Wavelet Galerkin BEM on unstructured meshes

The present paper is devoted to the fast solution of boundary integral equations on unstructured meshes by the Galerkin scheme. On the given mesh we construct a wavelet basis providing vanishing moments with respect to the traces of polynomials in the space. With this basis at hand, the system matrix in wavelet coordinates can be compressed to $\mathcal{O}(N\log N)$ relevant matrix coefficients, where $N$ denotes the number of unknowns. The compressed system matrix can be computed within suboptimal complexity by using techniques from the fast multipole method or panel clustering. Numerical results prove that we succeeded in developing a fast wavelet Galerkin scheme for solving the considered class of problems.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18585
Date01 September 2006
CreatorsHarbrecht, Helmut, Kähler, Ulf, Schneider, Reinhold
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
SourcePreprintreihe des Chemnitzer SFB 393, 04-06
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds