This thesis addresses the problem where we want to apply machine learning over a small data set of multivariate time series. A challenge when classifying data is when the data set is small and overfitting is at risk. Augmentation of small data sets might avoid overfitting. The multivariate time series used in this project represent motion data of people with reconstructed ACLs and a control group. The approach was pairing motion data from the training set and using Euclidean Barycentric Averaging to create a new set of synthetic motion data so as to increase the size of the training set. The classifiers used were Dynamic Time Warping -One Nearest neighbour and Time Series Forest. In our example we found this way of increasing the training set a less productive strategy. We also found Time Series Forest to generally perform with higher accuracy on the chosen data sets, but there may be more effective augmentation strategies to avoid overfitting.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-197105 |
Date | January 2022 |
Creators | Johansson, Marie-Louise |
Publisher | Umeå universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UMNAD ; 1330 |
Page generated in 0.0027 seconds