Return to search

DESENVOLVIMENTO E CARACTERIZAÇÃO DE UMA NOVA BLENDA POLIMÉRICA DE POLI(METIL METACRILATO)-POLI(ETILENOGLICOL) PARA PRODUÇÃO DE NANOCÁPSULAS E APLICAÇÃO EM DRUG DELIVERY

Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-20T12:23:08Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_CayaneGenroSantos.pdf: 3426105 bytes, checksum: 7a9b15fe21608009c9d6ca592e708bf4 (MD5) / Made available in DSpace on 2018-08-20T12:23:08Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_CayaneGenroSantos.pdf: 3426105 bytes, checksum: 7a9b15fe21608009c9d6ca592e708bf4 (MD5)
Previous issue date: 2017-03-20 / Polymers are part of our life and have many applications in different branches of industry. In pharmaceutics they are widely used in systems for the modified release of drugs. Polymer blends appear as an alternative to the use of individual polymers and have been utilized to produce nanocarriers. In the present study a polymeric material was developed to respond to a specific aim of the pharmaceutical industry, which is the sustained release of drugs. For this purpose, for the first time, a polymeric blend of poly(methyl methacrylate) - polyl(ethylenoglycol) (PMMA-PEG) was developed for the production of nanocapsules and the appication for the sustained delivery of a model-pharmaceutical, in this case, simvastatin. Tests were also performed for the characterization and stability of this nanostructure. Further, the cyto and genotoxicity of the nanocapsules in mononuclear cells of peripheral blood was evaluated, and an intermediate product was developed (nanocapsules of powdered simvastatin) to be used later by the pharmaceutical industry. The polymer blend of PMM-PEG was obtained with a high yield, 94 ± 3.7%. The infrared spectrum shows the typical bands at 3349 cm-1 and 2922 cm-1 corresponding to the vibration of the lengthening of -O-H and -C-H bonds. Characteristic bands at 1731 and 1102 cm-1 were attributed to -C=O and -C-O-C lengthening. In the 1H-RMN spectrum the sign of methylenic protons was observed at 3.68 ppm (-CH2OCH2-) of PEG and the peak at 3.61 ppm of the protons of cluster -OCH3 of PMMA. The molecular weight determined by GPC was 101.581 Da and the polydispersion index was 5.342. Analyses of DSC suggested that the mixture is a molecularly well dispersed system, and the curves of TGA indicated two weight losses in relation to both polymers.
The nanocapsules produced by the polymeric blend presented a particle size and polydispersion index of 198.2 ± 1.4 nm and 0.08 ± 0.01 for the white nanocapsules and 194.4 ± 1.7 nm and 0.07 ± 0.00 for the nanocapsules with simvastatin. The zeta potential value was -11.22 ± 3,01 mV for the nanocapsule with simvastatin and -9.19 ± 0.26 mV for the white nanocapsules, and efficiency of simvastatin encapsulation was high, 98.64 ± 0.00%. The condition of refrigerated storage (± 4 ºC) was what best ensured the preservation of the physicochemical characteristics of the suspensions over 90 days. The cyto and genotoxicity tests indicated that the samples tested were not toxic and, therefore, are safe for biomedical application.
The release of the drug from the nanocapsules was more sustained than its free form and the presence of PEG in the polymer blend of PMMA-PEG modified the release mechanism and increased the quantity of simvastatin released compared to the nanocapsules produced only with PMMA. Forty-five per cent release of simvastatin was observed in 24 hours, from the nanocapsules produced by the PMMA-PEG blend, and 34% from the capsules produced only with PMMA., while the non-encapsulated simvastatin was fully released in 17 hours. Finally, the suspensoins were efficiently dried by spray-drying, and resulted in an intermediate product with a yield of 66.83% and presented adequate physicochemical characteristics. Thus, we can conclude that the polymer blend was obtained successfully through a simple, efficient process, and served to develop a nanocarrier of drug.s The nanocapsules produced by the polymer blend promoted a sustained release of the drug, indicating that these nanocapsules are good candidates for use as drug carriers. / Os polímeros fazem parte da nossa vida e têm inúmeras aplicações em diversos setores industriais. Na área farmacêutica, são amplamente empregados em sistemas de liberação modificada de fármacos. As blendas poliméricas surgem como uma alternativa ao uso de polímeros individuais e têm sido utilizadas para produção de nanocarreadores. Neste trabalho, desenvolveu-se um material polimérico para atender a um fim específico da indústria farmacêutica, que é a liberação sustentada de fármacos. Para isso, produziu-se pela primeira vez, uma blenda polimérica de poli(metil metacrilato) (PMMA)-poli(etilenoglicol) (PEG) para a produção de nanocápsulas e aplicação na entrega sustentada de um fármaco-modelo, nesse caso, a sinvastatina. Realizaram-se testes de caracterização e estabilidade dessa nanoestrutura. Avaliou-se a cito e genotoxicidade das nanocápsulas em células mononucleares de sangue periférico e desenvolveu-se um produto intermediário (nanocápsulas de sinvastatina em pó) para ser usado posteriormente pela indústria farmacêutica. A blenda polimérica de PMMA-PEG foi obtida com alto rendimento, 94 ± 3,7%. O espectro de infra-vermelho mostra as bandas típicas em 3349 cm-1 e 2922 cm-1 correspondente à vibração de alongamento das ligações -O-H e -C-H. Bandas características em 1731 e 1102 cm-1 foram atribuídas ao alongamento -C=O e -C-O-C-. No espectro de 1H-RMN foi observado o sinal de prótons metilênicos em 3,68 ppm (-CH2OCH2-) do PEG e o pico em 3,61 ppm dos prótons do grupamento -OCH3 do PMMA. O peso molecular determinado por GPC foi 101.581 Da e índice de polidispersão foi 5,342. Análises de DSC sugeriram que a mistura é um sistema molecularmente bem disperso e as curvas de TGA indicaram duas perdas de peso em relação a ambos os polímeros.
As nanocápsulas produzidas pela blenda polimérica apresentaram tamanho de partícula e índice de polidispersão de 198,2 ± 1,4 nm e 0,08 ± 0,01 para as nanocápsulas brancas e de 194,4 ± 1,7 nm e 0,07 ± 0,00 para as nanocápsulas com sinvastatina. O valor de potencial zeta foi -11,22 ± 3,01 mV para as nanocápsulas com sinvastatina e de -9,19 ± 0,26 mV para as nanocápsulas brancas e a eficiência de encapsulação da sinvastatina foi elevada, 98,64 ± 0,00%. A condição de armazenamento sob refrigeração (± 4 ºC) foi a que melhor garantiu a preservação das características físico-químicas das suspensões ao longo de 90 dias. Os ensaios de cito e genotoxicidade indicaram que as amostras testadas não foram tóxicas e, portanto, são seguras para aplicação biomédica.
A liberação do fármaco das nanocápsulas foi mais sustentada do que a sua forma livre e a presença do PEG na blenda polimérica de PMMA-PEG modificou o mecanismo de liberação e aumentou a quantidade de sinvastatina liberada quando comparada com nanocápsulas produzidas apenas com o PMMA. Observou-se 45% de liberação, em 24 horas, da sinvastatina das nanocápsulas produzidas pela blenda de PMMA-PEG e 34% das nanocápsulas produzidas apenas com PMMA, enquanto a sinvastatina não encapsulada foi liberada totalmente em 17 horas. Por fim, a secagem das suspensões por spray-drying foi eficiente e resultou em um produto intermediário cujo rendimento foi de 66,83% e apresentou características físico-químicas adequadas. Assim, podemos concluir que a blenda polimérica foi obtida com sucesso através de um processo simples e eficiente e serviu para o desenvolvimento de um nanocarreador de fármacos. As nanocápsulas produzidas pela blenda polimérica promoveram uma liberação sustentada do fármaco indicando que estas nanocápsulas são bons candidatos para uso como transportadores de fármacos.

Identiferoai:union.ndltd.org:IBICT/oai:tede.universidadefranciscana.edu.br:UFN-BDTD/573
Date20 March 2017
CreatorsSantos, Cayane Genro
ContributorsRaffin, Renata Platcheck, Fernandes, Liana da Silva, Guerreiro, Irene Clemes Kulkamp, Machado, Fernando Machado, Boeck, Carina Rodrigues, Fagan, Solange Binotto
PublisherCentro Universitário Franciscano, Programa de Pós-Graduação em Nanociências, UNIFRA, Brasil, Biociências e Nanomateriais
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional Universidade Franciscana, instname:Universidade Franciscana, instacron:UFN
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds