Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc9741 |
Date | 12 1900 |
Creators | Romanes, Maia Castillo |
Contributors | Scharf, Thomas W., Gorman, Brian P., Banerjee, Rajarshi, Mirshams, Reza |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Copyright, Romanes, Maia Castillo, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0024 seconds