The overall goal of this study was to identify mineralized scaffolds which can serve as potential alternatives to bone graft substitutes intended for cleft palate repair. The aim of this preliminary study was to evaluate the role of fibrinogen (Fg) and nano-hydroxyapatite (nHA) in enhancing mineralization potential of polydioxanone (PDO) electrospun scaffolds. Scaffolds were fabricated by blending PDO:nHA:Fg in the following weight ratios: 100:0:0, 50:25:25, 50:50:0, 50:0:50, 0:0:100 and 0:50:50. Scaffolds were immersed in different simulated body fluids for 5 and 14 days to induce mineralization. The inclusion of fibrinogen induced sheet-like mineralization while individual fiber mineralization was noticed in its absence. Modified protocols of alizarin red staining and burn-out test were developed to quantify mineral content of scaffolds. After mineralization, 50:50:0 scaffolds were still porous and contained the most mineral. 50:25:25 scaffolds had the highest mineralization potential but lacked porosity. Therefore, it can be anticipated that these mineralized organic-inorganic electrospun scaffolds will induce bone formation.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3110 |
Date | 26 April 2010 |
Creators | Rodriguez, Isaac |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.1397 seconds