Return to search

Electron beam induced deposition (EBID) of carbon interface between carbon nanotube interconnect and metal electrode

Electron Beam Induced Deposition (EBID) is an emerging additive nanomanufacturing tool which enables growth of complex 3-D parts from a variety of materials with nanoscale resolution. Fundamentals of EBID and its application to making a robust, low-contact-resistance electromechanical junction between a Multiwall Carbon Nanotube (MWNT) and a metal electrode are investigated in this thesis research. MWNTs are promising candidates for next generation electrical and electronic devices, and one of the main challenges in MWNT utilization is a high intrinsic contact resistance of the MWNT-metal electrode junction interface. EBID of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and to improve mechanical characteristics of the MWNT-electrode junction. In this work, factors contributing to the EBID formation of the carbon joint between a MWNT and an electrode are systematically explored via complimentary experimental and theoretical investigations. A comprehensive dynamic model of EBID using residual hydrocarbons as a precursor molecule is developed by coupling the precursor mass transport, electron transport and scattering, and surface deposition reaction. The model is validated by comparison with experiments and is used to identify different EBID growth regimes and the growth rates and shapes of EBID deposits for each regime. In addition, the impact of MWNT properties, the electron beam impingement location and energy on the EBID-made carbon joint between the MWNT and the metal electrode is critically evaluated. Lastly, the dominant factors contributing to the overall electrical resistance of the MWNT-based electrical interconnect and relative importance of the mechanical contact area of the EBID-made carbon joint to MWNT vs. that to the metal electrode are determined using carefully designed experiments.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/31773
Date12 November 2009
CreatorsRykaczewski, Konrad
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds