Return to search

Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials

The push for electronic devices on smaller and smaller scales has driven research in the direction of transition metal dichalcogenides (TMD) as new ultra-thin semiconducting materials. These ‘two-dimensional' (2D) materials are typically on the order of a few nanometers in thickness with a minimum all the way down to monolayer. These materials have several layer-dependent properties such as a transition to direct band gap at single-layer. In addition, their lack of dangling bonding and remarkable response to electric fields makes them promising candidates for future electronic devices. For the purposes of this work, two 2D TMDs were studied, MoS2 and MoTe2. This dissertation comprises of three sections, which report on exploration of charge lifetimes, investigation environmental stability at elevated temperatures in air, and establishing feasibility of UV laser annealing for large area processing of 2D TMDs, providing a necessary knowledge needed for practical use of these 2D TMDs in optoelectronic and electronic devices.
(1) A study investigating the layer-dependence on the lifetime of photo-generated electrons in exfoliated 2D MoTe2 was performed. The photo-generated lifetimes of excited electrons were found to be strongly surface dependent, implying recombination events are dominated by Shockley-Read-Hall effects (SRH). Given this, the measured lifetime was shown to increase with the thickness of exfoliated MoTe¬2; in agreement with SRH recombination. Lifetimes were also measured with an applied potential bias and demonstrated to exhibit a unique voltage dependence. Shockley-Read-Hall recombination effects, driven by surface states were attributed to this result. The applied electric field was also shown to control the surface recombination velocity, which lead to an unexpected rise and fall of measured lifetimes as the potential bias was increased from 0 to 0.5 volts.
(2) An investigation into the environmental stability of exfoliated 2D MoTe2 was conducted using a passivation layer of amorphous boron nitride as a capping layer for back-gated MoTe2 field effect transistor (FET) devices. A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe2 devices while BN-covered FETs showed remarkable chemical and electronic characteristic stability. Uncapped MoTe2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe2 was the primary doping mechanism for the polarity switch.
(3) The feasibility of UV laser annealing as a post-process technique to sinter 2D crystal structures from sputtered amorphous MoS2 was explored. Highly crystalline materials are sought after for their use in electron and opto-electronic devices. Sputtered MoS2 has the advantage of potential for large area deposition and high scalability, however, it requires high temperatures (>350 °C) for their crystalline growth. Which creates difficulty for devices grown on polymer substrates. Low-temperature and room temperature deposition results in amorphous films which is detrimental for electric devices. A one-step lase annealing procedure was developed to provide amorphous to crystalline conversion of nanometer thin MoS2 films. Samples were annealed using an unfocused laser beam from a KrF (248 nm) excimer source. The power density was found to be 1.04 mJ/mm2. Raman analysis of laser annealed MoS2 was shown to exhibit a significant improvement of the 2D MoS2 crystallinity compared to as-deposited films on both SiO2/Si, as well as polydimethylsiloxane (PDMS) substrates. Annealed samples showed improvement of their conductivity on an order of magnitude. A top-gated FET device was fabricated on flexible PDMS substrates using Al2O3 as a gate oxide. Measured field effect mobility of annealed samples showed significant improvement over as-deposited devices.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1157626
Date05 1900
CreatorsSirota, Benjamin
ContributorsVoevodin, Andrey A., Shepherd, Nigel, Glavin, Nicholas, Kaul, Anupama, Mukherjee, Sundeep
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatx, 90 pages, Text
RightsPublic, Sirota, Benjamin, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds