Return to search

Matrice de nanofils piézoélectriques interconnectés pour des applications capteur haute résolution : défis et solutions technologiques / Interconnected piezoelectric nanowire matrix for high resolution sensor applications : technological challenges and solutions

Ce projet de thèse aborde la question de l’intégration hétérogène de nanofils interconnectés sur des puces microélectroniques à destination de dispositifs de type MEMS et NEMS. Ces dispositifs visent à adresser la problématique globale qu’est le « More than Moore », c’est-à-dire la transformation des filières CMOS classiques pour permettre le développement de nouveaux micro et nano-composants intégrés.En particulier, ces dernières années, une variété de dispositifs à base de nanomatériaux ont vu le jour, conférant à des dispositifs de type micro-actionneurs et micro-capteurs de nouvelles fonctionnalités et/ou des performances accrues, e.g. en termes de résolution, sensibilité, sélectivité. Nous nous intéresserons ici à un certain type de nanostructures, les nanofils d’oxyde de zinc (ZnO), qui ont surtout été utilisés pour concevoir des dispositifs dont le principe de fonctionnement exploite l’effet piézoélectrique, souvent astucieusement combiné avec leurs propriétés semiconductrices. En effet, sous l’effet d’une contrainte mécanique ou d’un déplacement, les nanofils piézoélectriques génèrent un potentiel électrique (piézopotentiel). Si, en outre, les nanofils sont semiconducteurs, le piézopotentiel peut être utilisé pour contrôler un courant externe en fonction de la contrainte mécanique imposée au nanofil (effet piézotronique). L’avantage d’utiliser des nanostructures unidimensionnelles réside dans la modularité de leurs propriétés mécaniques et piézoélectriques en comparaison avec le matériau massif. Par ailleurs, leur intégration est aujourd’hui possible par des voies de croissance compatibles avec les procédés microélectroniques (CMOS/MEMS). Toutes ces considérations rendent possibles la conception de dispositifs très haute performance combinant la faible dimension des éléments fonctionnels (et donc une forte densité d’intégration synonyme de haute résolution spatiale) et leur sensibilité à des phénomènes d’échelle nanoscopique.Dans ce projet de thèse, on adoptera une vision très technologique de la conception de capteurs matriciels à base de nanofils piézoélectriques verticaux en ZnO. S’appuyant sur la prédiction des performances théoriques et la levée des verrous technologiques associés à la conception et la fabrication du capteur, cette étude s’attache à fournir des prototypes faisant la preuve de concept de ces dispositifs haute performance. Dans un premier temps, la réflexion s’articule autour de modèles multi-physiques par éléments finis (FEM) de la réponse piézoélectrique d’un seul nanofil en flexion, modèle que nous avons fait évoluer vers des pixels complets représentatifs d’un nanofil interconnecté dans une matrice. Sur la base de ces considérations, nous avons imaginé des moyens de caractérisation de la réponse piézoélectrique d’un fil, puis d’un pixel. Le banc de caractérisation mis en place a mis en évidence la complexité d’une mesure piézoélectrique systématique, calibrée et décorrélée des éléments environnants du pixel. Des solutions technologiques adéquates ont pu être imaginées et mises en œuvre à travers la réalisation de pixels élémentaires caractérisables et dont la réponse piézoélectrique peut être prédite théoriquement.Cette réalisation a fait appel à un développement en plusieurs étapes, incluant la croissance par voie chimique des nanofils en ZnO, puis la conception de la matrice d’électrodes contactant individuellement les nanofils. La première se découpe en deux étapes : d’abord le choix d’une couche de germination favorisant la croissance sur puce silicium et compatible avec les procédés de salle blanche ; ensuite le développement d’un procédé de croissance permettant la localisation des nanofils au sein d’une matrice d’électrodes. La seconde moitié du travail de fabrication a consisté à définir et à optimiser l’empilement technologique respectant toutes les considérations abordées jusqu’alors, et à définir les procédés technologiques aboutissant à la fabrication de la matrice finale. / This thesis project deals with the question of heterogeneous integration of interconnected nanowires on microelectronics chips in a view to MEMS and NEMS type devices. These devices aim to address the global problematic of “More than Moore”, that is the transformation of classical CMOS microelectronics processes to enable the development of new integrated micro and nanocomponents.In particular, over the past few years, a variety of nanomaterial-based devices have arisen, revealing micro-actuators and micro-sensors with new functionalities and/or improved performances, e.g. in terms of resolution, sensitivity, selectivity. Here we will focus on a certain type of nanostructures, Zinc Oxide (ZnO) nanowires, which have mostly been used so far to design devices whose working principle exploits the piezoelectric effect, often judiciously combined with their semiconducting properties. Indeed, when submitted to a mechanical constraint or displacement, piezoelectric nanowires generate an electrical potential (piezopotential). If, in addition to this, nanowires are also semiconducting, the piezopotential can be exploited to control an external current as a function of the mechanical constraint imposed to the nanowire (piezotronic effect). The advantage of using one-dimensional nanostructures lies into the modularity of both their mechanical and piezoelectric properties, in comparison with the bulk material. Moreover, their integration is now possible thanks to growth processes compatible with microelectronic processes (CMOS/MEMS). All these considerations make it possible to design very high performance devices combining the very small dimension of their functional unit elements (hence a high integration density which implies a high spatial resolution) and their sensitivity to nanoscale phenomena.In this project, we will adopt a very technology-oriented vision of the design of vertically-aligned ZnO-piezoelectric-nanowire matrix-type sensors. Relying on theoretical performance predictions and technological choices to solve device design and fabrication issues, this study aims to produce proof-of-concept prototypes of these high performance devices. First of all, the design process is elaborated based on finite element multiphysics models (FEM) of the piezoelectric response of a single bent nanowire, which we upgraded towards complete pixels, representative of an interconnected nanowire within a matrix. Following these considerations, we have imagined means of characterization of the piezoelectric response of a wire, then of a pixel. The implemented characterization experiment highlighted the complexity of carrying out a systematic, calibrated piezoelectric measurement, decorrelated from the environment of the pixel. Adequate technological solutions could then be implemented through the fabrication of elementary pixels suitable for characterization and whose piezoelectric response could be predictively modeled.This technological part of the work encompassed several development stages, including the chemical growth of ZnO nanowires and the design of the electrode matrix contacting the nanowires individually. The former splits into two steps: first choosing a clean-room compatible seed layer which will favor growth on a Silicon chip; secondly developing a selective growth process enabling the localization of nanowires within a predefined matrix of electrodes. The second part of the fabrication work focused on defining and optimizing the technological stack with respect to all the above mentioned considerations, and implementing the technological processes yielding the final targeted matrix.

Identiferoai:union.ndltd.org:theses.fr/2016GREAT015
Date04 March 2016
CreatorsLeon Perez, Edgar
ContributorsGrenoble Alpes, Mouis, Mireille, Pauliac-Vaujour, Emmanuelle
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds