Return to search

Esrrb is a prominent target of Nanog that substitutes for Nanog function in ES cell self-renewal, reprogramming and germline development

Embryonic stem (ES) cell pluripotency is sustained by a network of transcription factors centred on Oct4, Sox2 and Nanog. Whilst Oct4 and Sox2 expression is relatively uniform, ES cells fluctuate between states of high Nanog expression possessing high self-renewal efficiency, and low Nanog expression exhibiting increased differentiation propensity. Moreover, modulation in the level of Nanog expression determines the efficiency of ES cell self-renewal. To identify genes regulated by Nanog, genome-wide transcriptional profiling was performed on ES cells expressing different Nanog levels and Nanog-null ES cells expressing a Nanog-ERT2 fusion protein in which nuclear Nanog activity can be regulated by tamoxifen. Surprisingly, only a minor fraction of the genes to which Nanog binds showed significant changes in response to Nanog induction. Prominent amongst Nanog-responsive genes is Estrogen-related receptor b (Esrrb). Nanog binds directly to Esrrb, enhances binding and pause-release of RNAPolII from the Esrrb promoter and stimulates Esrrb transcription. Consistent with these findings, elevation of Nanog produces a cell population that expresses uniformly high Esrrb levels. Moreover, double fluorescent reporter lines show that Esrrb and Nanog levels are strongly correlated in individual cells. Loss of Nanog is required for downregulation of Esrrb, which coincides with commitment to differentiate. Esrrb overexpression results in LIF independent self-renewal, and blocks neural differentiation, even in the absence of Nanog. Cell fusion experiments between ES and neural stem (NS) cells show that elevated Esrrb levels allow the reprogramming of the NS cell genome in the absence of Nanog. Esrrb can rescue stalled reprogramming during the derivation of Nanog-/- induced pluripotent stem (iPS) cells. Moreover, targeted knock-in of Esrrb at the Nanog locus rescues the ability of Nanog null ES cells to maintain germ cell development beyond E12. Finally, Esrrb deletion abolishes the defining ability of Nanog to confer LIF-independent selfrenewal to ES cells. Together these data identify Esrrb as a critical downstream mediator of Nanog function.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:676177
Date January 2013
CreatorsFestuccia, Nicola
ContributorsChambers, Ian ; Lowell, Sally ; Tomlinson, Simon
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/12232

Page generated in 0.0014 seconds